
4D Gaussian Videos with Motion Layering
PINXUAN DAI∗, State Key Lab of CAD&CG, Zhejiang University, China
PEIQUAN ZHANG∗, State Key Lab of CAD&CG, Zhejiang University, China
ZHENG DONG, State Key Lab of CAD&CG, Zhejiang University, China
KE XU, City University of Hong Kong, China
YIFAN PENG, The University of Hong Kong, China
DANDAN DING, Hangzhou Normal University, China
YUJUN SHEN, Ant Group, China
YIN YANG, The University of Utah, USA
XINGUO LIU, State Key Lab of CAD&CG, Zhejiang University, China
RYNSON W.H. LAU, City University of Hong Kong, China
WEIWEI XU†, State Key Lab of CAD&CG, Zhejiang University, China

4DGS 262MB/s

… …

Group of Gaussians (GOG)

Real-Time Streaming of 4DGV

STG 40MB/s

Ours 1.5MB/s

Ex4DGS 39MB/s 3DGStream 236MB/s

Motion Layering

Static Points

Dynamic Points

Shared

Deformed

Free View

Fig. 1. 4D Gaussian Video (4DGV) for volumetric video streaming. Left: Our 4DGV representation reconstructs high-quality volumetric video content
using Group of Gaussians (GOG). Notably, the reconstructed GOGs occupy a compact size of only 1~4MB per second across diverse datasets, which can be
displayed in our web player in real-time using Github as the HTTP server.

∗Joint first authors
†Corresponding author

Authors’ addresses: Pinxuan Dai, daipinxuan@zju.edu.cn, State Key Lab of CAD&CG,
Zhejiang University, China; Peiquan Zhang, pqcheung@zju.edu.cn, State Key Lab of
CAD&CG, Zhejiang University, China; Zheng Dong, zhengdong@zju.edu.cn, State
Key Lab of CAD&CG, Zhejiang University, China; Ke Xu, kkangwing@gmail.com,
City University of Hong Kong, China; Yifan Peng, evanpeng@hku.hk, The University
of Hong Kong, China; Dandan Ding, dandanding@hznu.edu.cn, Hangzhou Normal
University, China; Yujun Shen, shenyujun0302@gmail.com, Ant Group, China; Yin Yang,
yangzzzy@gmail.com, The University of Utah, USA; Xinguo Liu, xgliu@cad.zju.edu.cn,
State Key Lab of CAD&CG, Zhejiang University, China; RynsonW.H. Lau, rynson.lau@
cityu.edu.hk, City University of Hong Kong, China; Weiwei Xu, xww@cad.zju.edu.cn,
State Key Lab of CAD&CG, Zhejiang University, China.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 0730-0301/2025/8-ART124
https://doi.org/10.1145/3731189

Online free-view navigation in volumetric videos requires high-quality ren-
dering and real-time streaming in order to provide immersive user expe-
riences. However, existing methods (e.g., dynamic NeRF and 3DGS) may
not handle dynamic scenes with complex motions, and their models may
not be streamable due to storage and bandwidth constraints. In this paper,
we propose a novel 4D Gaussian Video (4DGV) approach that enables the
creation and streaming of photorealistic, volumetric videos for dynamic
scenes over the Internet. The core of our 4DGV is a novel streamable group
of Gaussians (GOG) representation based on motion layering. Each GOG
consists of static and dynamic points obtained via lifting 2D segmentation
into 3D in motion layering, where the deformation of each dynamic point is
represented as the temporal offset of its attributes. We also adaptively con-
vert static points back to dynamic points to handle the appearance change,
(e.g., moving shadows and reflections), of static objects through optimization.
To support real-time streaming of 4DGVs, we show that by applying quanti-
zation on Gaussian attributes and H.265 encoding on deformation offsets,
our GOG representation can be significantly compressed (to around 6% of
the original model size) without sacrificing the accuracy (PSNR loss less
than 0.01dB). Extensive experiments on standard benchmarks demonstrate
that our method outperforms state-of-the-art volumetric video approaches,
with superior rendering quality and minimum storage overheads.

ACM Trans. Graph., Vol. 44, No. 4, Article 124. Publication date: August 2025.

https://doi.org/10.1145/3731189

124:2 • Pinxuan Dai, Peiquan Zhang, Zheng Dong, Ke Xu, Yifan Peng, Dandan Ding, Yujun Shen, Yin Yang, Xinguo Liu, Rynson W.H. Lau, and Weiwei Xu

CCS Concepts: • Computing methodologies→ Dynamic Reconstruc-
tion.

Additional Key Words and Phrases: Volumetric Video, Motion Layering,
Group of Gaussians, Gaussian Video Compression

ACM Reference Format:
Pinxuan Dai, Peiquan Zhang, Zheng Dong, Ke Xu, Yifan Peng, Dandan
Ding, Yujun Shen, Yin Yang, Xinguo Liu, Rynson W.H. Lau, and Weiwei Xu.
2025. 4D Gaussian Videos with Motion Layering. ACM Trans. Graph. 44, 4,
Article 124 (August 2025), 18 pages. https://doi.org/10.1145/3731189

1 INTRODUCTION
Volumetric videos [Broxton et al. 2020; Li et al. 2022b] are an emerg-
ing form of media that have wide applications ranging from remote
presence to holographic classrooms. The key feature of volumetric
videos is that they encode intricate 4D space-time scene information
for immersive user experiences. Therefore, pursuing high-quality,
real-time rendering combined with compact representations for ef-
ficient transmission is paramount in developing online volumetric
video systems.

Existing volumetric videomethods primarily rely on dynamic neu-
ral radiance field (NeRF) [Cao and Johnson 2023; Li et al. 2022b; Park
et al. 2021] or 3D Gaussian splatting (3DGS) [Kerbl et al. 2023]. In
order to handle dynamic scenes, deformable GS-based methods [Wu
et al. 2024a; Yang et al. 2024a,b] are recently proposed to enhance the
conventional static 3DGS [Kerbl et al. 2023] by allowing Gaussian
point attributes to evolve over time. This is accomplished by pre-
dicting temporal deformation fields through implicit functions [Wu
et al. 2024a; Yang et al. 2024a], or by slicing explicit 4D Gaussian
kernels [Yang et al. 2024b] along the temporal axis. While these
methods can support real-time rendering and deliver remarkable
visual results, they face challenges when deployed online for long
videos or scenes featuring complex motions: (1) Limited Scalabil-
ity. The representation capability of implicit neural deformation
fields [Wu et al. 2024a; Yang et al. 2024a] is constrained by their
fixedmodel size, restricting their ability to effectively handle lengthy
videos and complex motions. (2) Upsurging Storage Demands.
3DGS imposes high demands on storage due to the large number of
explicit attributes associated with each point. Extending 3DGS with
temporal dimension [Duan et al. 2024; Yang et al. 2024b] will intro-
duce more severe storage challenges as more points are required to
represent dynamic scenes. Consequently, achieving top-notch, real-
time rendering and streamable transmission for volumetric video
applications remains a great challenge.
To tackle these challenges, this paper develops a scalable and

compact representation for online volumetric videos. The key con-
cept is to integrate the Group of Pictures (GOP) structure in MPEG
standard [Sullivan et al. 2012; Sze et al. 2014] as a basic compo-
nent for efficiently compressing and transmitting volumetric video
data. This approach offers dual benefits. First, segmenting the video
into groups keeps the memory and computational complexities at
manageable levels, providing a scalable solution for handling long
volumetric videos. Second, the group structure helps break down
complex temporal motions into piecewise functions, reducing the
complexity of motion modeling. At the beginning frame of each
group (i.e., keyframe), we can adjust the distribution of the Gaussian

points to prevent error accumulation inmotion tracking. Meanwhile,
we observe that a large portion of the scene in a video is typically
static. This motivates us to adopt motion layering to separate the
dynamic and static Gaussian points, thereby reducing the computa-
tional and storage costs associated with learning the deformation
of static points.

The main technical contribution of this paper is a novel group of
Gaussians (GOG) representation for streamable volumetric videos,
which are termed 4D Gaussian Videos (4DGVs). Each GOG consists
of dynamic and static points, where dynamic points are represented
as canonical points with time-dependent deformation offsets [Yang
et al. 2024a] to model the scene motions within a time window. To ef-
ficiently reuse the static points across multiple GOGs, we retain their
attributes without updates during optimizations. The dynamic/static
point separation in 3D space is achieved by the adaptive motion lay-
ering step. We first detect raw motion masks for dynamic regions in
input frames using optical flow [Wang et al. 2024a], and then lever-
age semantic segmentation [Ravi et al. 2024b] to complete and refine
the motion masks. The 2D motion masks are lifted into Gaussian
points by optimizing a motion label parameter associated with each
point through the differentiable Gaussian rasterization. To mitigate
the impact of inaccurate 2D motion masks and, more importantly, to
capture appearance changes like moving reflections and shadows on
static objects, we adaptively convert static points to dynamic ones
throughout the optimization by tracking the view-space positional
gradients of the static points.

Furthermore, we design a progressive frame-sampling strategy to
improve the accuracy of the optimized offsets for the dynamic points.
During the optimization of deformation offsets, we first sample the
frames within a group close to the keyframe in the early training
iterations to warm up the deformation field learning, and then the
frames that are farther from the keyframe. This strategy avoids the
difficulty in predicting long-range motions for the initialized Gauss-
ian points at the early stage of the optimization, which improves
the rendering quality of objects with large motions significantly.

Finally, we investigate compression techniques for real-time 4DGV
streaming. We apply vector and bit quantization to Gaussian point
attributes for point-cloud compaction, and H.265 encoding [Sullivan
et al. 2012; Sze et al. 2014] for the compression of point deformation
offsets extracted from the learned deformation fields, achieving a
compression ratio of 6% with minimal loss in rendering quality (less
than 0.01 dB).
Based on GOG and the technical components mentioned above,

we have developed a 4DGV system that is capable of streaming
volumetric video over the Internet. Extensive experiments on multi-
ple public datasets verify the effectiveness of our proposed 4DGV
method, against the existing dynamic scene reconstruction methods
in terms of view synthesis quality and storage efficiency, especially
for handling complex and fast motions, as illustrated in Fig. 1.

2 RELATED WORK

2.1 Volumetric Video
Creating volumetric videos for dynamic scenes has been a long-
standing research focus in the graphics and vision communities.
Early studies pursued this objective through various methodologies,

ACM Trans. Graph., Vol. 44, No. 4, Article 124. Publication date: August 2025.

https://doi.org/10.1145/3731189

4D Gaussian Videos with Motion Layering • 124:3

including view interpolation [Jain and Wakimoto 1995; Zitnick et al.
2004], dynamic lumigraph [Goldlücke et al. 2002; Schirmacher et al.
2001], scene flow [Vedula et al. 2000; Zhang and Kambhamettu 2001],
and geometric cues (e.g., depth and textured mesh) [Broxton et al.
2020; Newcombe et al. 2015]. More recent approaches utilize neural
radiance fields (NeRFs) [Li et al. 2022b; Lin et al. 2022; Park et al.
2021; Pumarola et al. 2020; Song et al. 2023] to render realistic novel
view images, albeit at the cost of being slow to train and render.
Despite efforts being made on acceleration using, e.g., occupancy
fields [Dong et al. 2023; Wang et al. 2024b] and spatial factoriza-
tion [Cao and Johnson 2023; Fridovich-Keil et al. 2023], achieving
real-time rendering is still challenging for these NeRF-based ap-
proaches.
3D Gaussian Splatting (3DGS) [Kerbl et al. 2023] is an efficient

alternative for reconstructing and rendering dynamic scenes by
incorporating implicit deformation fields parameterized by Multi-
layer Perceptrons (MLPs) [Yang et al. 2024a], K-Planes [Wu et al.
2024a], and hashgrid [Sun et al. 2024; Xu et al. 2024a]. However, the
MLPs used in [Yang et al. 2024a] compromise the rendering speed,
while the K-Planes [Wu et al. 2024a] may struggle to accurately ren-
der scene details. In this context, hashgrid-based methods [Sun et al.
2024; Xu et al. 2024a] strike a balance between rendering quality and
computational efficiency. Certain studies [Duan et al. 2024; Yang
et al. 2024b] employ 4D Gaussian kernels to model temporal dynam-
ics. While these methods effectively accommodate variable-length
videos with complex dynamics by extending the point densification
mechanism to the temporal dimension, they incur a significant in-
crease in the number of points and model size, requiring several
GBs for few-second reconstructions. More detailed discussions on
3DGS can be found in this survey [Wu et al. 2024b].
TGH [Xu et al. 2024c] introduces a temporal hierarchy struc-

ture and achieves implicit static/dynamic separation based on de-
formation velocity. Given the whole multi-view video as input, it
demonstrates impressive performance in long video reconstruction.
However, it is difficult to directly apply video compression tech-
niques to their representation since its data organization, without
post-processing, is not compatible with the group structure used
in video compression. In contrast, our representation is intention-
ally designed and restructured based on the group structure. It is
more friendly to video compression and able to achieve high-quality
reconstruction results even after compression. Furthermore, TGH re-
quires per-frame sparse points for initialization, whereas ourmethod
only necessitates sparse points in the first frame and progressively
reconstructs the scene dynamics using sequential GOGs.

There are also research works on reconstructing streamable volu-
metric videos using 3DGS. 3DGStream [Sun et al. 2024] models a
dynamic scene using per-frame deformation fields, without consider-
ing temporal coherence in optimization. STG [Li et al. 2024] directly
divides the input video into multiple groups and models them inde-
pendently, causing storage redundancy and flicker artifacts during
group transitions. In contrast, our method integrates incremental
reconstruction and a fade-out/fade-in operation at group boundaries
to remove the flickering. Ex4DGS [Lee et al. 2024c] separates the
points into fully dynamic points and linearly moving points in the
explicit Gaussian attribute interpolation. In contrast, we assume

that static points do not move, and they only need to be stored once
and shared across multiple groups to further reduce the storage.

2.2 Motion Layering Methods
Optical flow plays a crucial role in motion layering methods [Brox
and Malik 2010; Hui et al. 2018; Janai et al. 2018; Ling et al. 2022;
Ren et al. 2019; Teed and Deng 2020; Tian and Andrade-Cetto 2024;
Weinzaepfel et al. 2013; Zhu et al. 2024]. Based on 4D correlation
volume and iterative refinement, optical flow-based approaches ex-
cel at accurately estimating local motions. However, these methods
often struggle to effectively handle long-range motions. This issue
may be mitigated via tracking-based methods [Doersch et al. 2022,
2023; Harley et al. 2022; Karaev et al. 2024; Ravi et al. 2024a; Sand
and Teller 2008].
Another line of methods model motions by performing a global

optimization across the entire video [Chang et al. 2013; Pumarola
et al. 2020; Rubinstein et al. 2012; Sun et al. 2010; Vondrick et al. 2018].
Typical methods include omnimattes [Gu et al. 2023; Lin et al. 2023;
Lu et al. 2021; Suhail et al. 2023] and deformable NeRF/GS [Weng
et al. 2022; Yang et al. 2024a; Zhu et al. 2024]. OmniMotion [Wang
et al. 2023a] leverages NeRF [Mildenhall et al. 2021; Pumarola et al.
2020] to provide 3D supervision while incorporating a normalizing
flow network [Sun et al. 2010] to model deformations. FastOmni-
Track [Song et al. 2024] extends OmniMotion by integrating depth
guidance [Bhat et al. 2023] and DINOv2 feature [Oquab et al. 2023].
MotionGS [Zhu et al. 2024] introduces a multi-flow approach to
guide the deformation of 3D Gaussians. Lee et al. [2024a] propose to
combine the generative prior of video diffusion models for motion
layering.
In this work, we extend 2D motion layering by lifting onto 3D

space for explicit initialization of dynamic points, and adaptively
convert static points to dynamic ones as needed. This design helps
to reduce both computation and storage overheads during the re-
construction for dynamic scenes.

2.3 Point Cloud Compression
Point clouds are a widely used 3D representation method renowned
for their ability to faithfully capture the intricate details of 3D ob-
jects. However, they suffer from high storage demands, causing high
data transmission and processing overheads. Numerous efforts have
been made to develop efficient Point Cloud Compression (PCC) algo-
rithms aimed at minimizing the size of point clouds with a minimal
loss. The MPEG standard, G-PCC [ISO 2018a], employs an octree
structure for efficient compression of point cloud geometry and
attribute. DRACO [Google 2017] encodes the point attributes with
the range Asymmetric Numeral System (rANS) [Duda 2014] based
on k-D trees. V-PCC [ISO 2018b] iteratively segments a sequence of
point clouds into patches, flattens the patches onto 2D images, and
utilizes existing video codecs [Kalva 2006; Sullivan et al. 2012; Sze
et al. 2014; Wiegand et al. 2003] to efficiently compress flattened
point cloud images. However, the patch segmentation easily leads
to projection distortions, especially for the irregular and detailed
geometry of the 3D Gaussian point clouds.

ACM Trans. Graph., Vol. 44, No. 4, Article 124. Publication date: August 2025.

124:4 • Pinxuan Dai, Peiquan Zhang, Zheng Dong, Ke Xu, Yifan Peng, Dandan Ding, Yujun Shen, Yin Yang, Xinguo Liu, Rynson W.H. Lau, and Weiwei Xu

Gaussian Point Init. Motion Layering Init. GOG Reconstruction

Dynamic Static

SfM Points

H.265
Codec

Multi-Stage Reconstruction PipelineInput Videos 4D Gaussian Video

Δ𝐱, Δ𝐪

...

...

...

...

G
ro

up
 #

1
Keyframe #1

Keyframe #2

Keyframe #3
Motion Layering Init. GOG Reconstruction

Dynamic

Static

Adaptive
Static-Point
Conversion

Gaussian Point Init.

Last GOG Points

GOG #1

MP4 Tracks

Point Cloud

Static Gaussians
Dynamic Gaussians

Δ𝐱, Δ𝐪

GOG #2

MP4 Tracks

Point Cloud
Dynamic Gaussians

Δ𝐱, Δ𝐪

G
ro

up
 #

2

Fig. 2. 4DGV Overview. We take a multi-view video as input and employ the 4DGV representation to transform each group of input frames into a group of
Gaussians (GOG). The process involves the following stages: (a) Gaussian point initialization learns to establish static Gaussian point clouds as initialization at
each keyframe timestamp. (b)Motion layering initialization separates dynamic and static points, enabling static points to be shared across multiple groups.
(c) GOG reconstruction learns to deform dynamic points for modeling scene dynamics within each frame group. The points deformed to the next keyframe
timestamp serve as initialization for the subsequent group. We further leverage the H.265 codec to encode time-dependent point deformations as multiple
MP4 tracks for efficient compression. Finally, the reconstructed GOGs are consolidated for seamless real-time streaming.

While 3D Gaussian representation can be regarded as a point
cloud with geometry coordinates and a set of attributes, substan-
tial efforts have been devoted for efficient compression [Kerbl et al.
2023]. Some methods aim to reduce redundant points using struc-
tured scaffolding [Chen et al. 2024; Lu et al. 2024] and densification
strategies [Fan et al. 2023; Mallick et al. 2024]. Others focus on
compressing the spherical harmonics (SH) appearance model using
distillation [Fan et al. 2023], appearance grid [Chen et al. 2024; Lee
et al. 2024b], vector quantization [Navaneet et al. 2024; Niedermayr
et al. 2024; Wang et al. 2024d], and dynamic expansion for SH de-
grees [Xu et al. 2024c]. Most recently, V3 [Wang et al. 2024c] adopts
the H.265 codec to compress dynamic Gaussian point attributes,
and achieves real-time streaming for human performance render-
ing. However, this method leads to relatively large compression
loss as revealed in our experiments. In this work, we show that the
H.265 codec is more effective when applied to point deformations,
resulting in lower compression-induced losses.

3 PRELIMINARY
Our method is built upon the recent techniques of 3DGS [Kerbl
et al. 2023] and its extensions to dynamic scenes [Yang et al. 2024a].
3DGS employs an explicit Gaussian point cloud for scene represen-
tation, with each Gaussian point characterized by a set of attributes
{x𝑖 , q𝑖 , si, 𝑜𝑖 , c𝑖 }𝑖∈P , which are its center position, rotation, scale,
opacity and color features represented by spherical harmonic co-
efficients, respectively, with 𝑖 being the point index. The Gaussian
kernel weight 𝛼𝑖 is computed from these attributes. The color of

each pixel is rendered by alpha-blending point colors along the ray:

𝐶 =

𝑛∑︁
𝑖=0

𝑇𝑖𝛼𝑖c𝑖 , 𝑇𝑖 =

𝑖−1∏
𝑗=0

(1 − 𝛼 𝑗) . (1)

The deformable 3DGS [Yang et al. 2024a] methods typically learn
temporal-varying deformation offsets of Gaussian points via implicit
deformation fields parameterized by neural networks Θ:

Δx𝑖,𝑡 ,Δq𝑖,𝑡 ,Δs𝑖,𝑡 = FΘ (x𝑖 , 𝑡),

where Δ indicates the offset, and 𝑖 and 𝑡 are the indexes of Gaussian
points and timestamps, respectively. Some other methods also let the
𝑜𝑖,𝑡 to vary over time. During optimization, the offsets are applied
to Gaussian points in the canonical space such that their rendering
results align with each video fame. The Gaussian points in canonical
space are jointly optimized with the deformation network.

4 4D GAUSSIAN VIDEO
Given a multi-view variable-length 𝑡∈[0, +∞) video stream as the
input {𝐼𝑣,𝑡 }, where 𝑣∈V is the view index, we designate a keyframe
every 30 frames and obtain frame groups {𝐼𝑣,𝑡 }𝑣∈V,𝑡 ∈[𝑘𝑖 ,𝑘𝑖+1) ac-
cordingly, where 𝑘𝑖 indicates the keyframe timestamp. Our 4D
Gaussian Video (4DGV) system reconstructs groups of Gaussians
GOG𝑘 = {P𝑠

𝑘
,P𝑑

𝑘
,D𝑘 } from frame groups, where P𝑠

𝑘
and P𝑑

𝑘
rep-

resent the sets of static and dynamic points, respectively, and D𝑘

indicates the set of deformation offsets for P𝑑
𝑘
.

As shown in Fig. 2, we reconstruct GOGs in a 4DGV through
a multi-stage reconstruction pipeline, and encode them using the
H.265 codec. Within this pipeline, the initialization of Gaussian
points and motion layering are applied to keyframe timestamps 𝑘𝑖 ,

ACM Trans. Graph., Vol. 44, No. 4, Article 124. Publication date: August 2025.

4D Gaussian Videos with Motion Layering • 124:5

Optical Flow

SAM
Propagation

SAM
Completion

Current Keyframe 𝐼!!,#! RAFT-Label 𝑀!!,#!
$%&'

SAM-Label 𝑀!!,#!
(%)Next Keyframe 𝐼!!,#!"#

Multiview Motion Labels {𝑀!,#!}

⊕{𝑀!,#!
$%&'}

Fig. 3. Motion label image generation. Pixels with a dynamic label in
images are highlighted with colors. We use optical flow [Wang et al. 2024a]
to compute RAFT-label𝑀𝑟𝑎𝑓 𝑡

𝑣𝑖 ,𝑘𝑖
(highlighted in blue), and use SAM2 [Ravi

et al. 2024b] to fill in the missing parts of the dynamic object in 𝑀𝑠𝑎𝑚
𝑣𝑖 ,𝑘𝑖

(highlighted in orange).

providing an initial Gaussian point cloud {P𝑠
𝑘
,P𝑑

𝑘
} with dynamic-

static separation (Sec. 4.1). The initial Gaussian points at the first
frame of the video are obtained through the standard 3DGS pipeline.
Subsequently, P𝑑

𝑘
is deformed to model the scene motion within

each frame group (Sec. 4.2). We fix the attributes of P𝑠
𝑘
during the

GOG reconstruction and share P𝑠
𝑘
across groups to substantially

reduce the optimization and storage costs in GOG, while allowing
P𝑑
𝑘
to be optimized, pruned, and cloned as in 3DGS. Furthermore, we

deform the Gaussian points in previous GOG to the next keyframe
as a dynamic-point initialization for the next group to incrementally
reconstruct the whole video. It can reduce the initialization time
at each group and is beneficial in reconstructing a long-duration
volumetric video.

Finally, we incorporate the quantization and compression to re-
duce the model size (Sec. 4.3).

4.1 Adaptive Motion Layering
The motion layering starts with initializing a motion label, i.e., static
or dynamic, for each pixel in the multi-view images of the keyframes
using 2D vision models [Ravi et al. 2024b; Wang et al. 2024a]. These
motion labels are then lifted to Gaussian points through differen-
tiable Gaussian rasterization. Due to the attributes of static points
are fixed during the latter GOG reconstruction, an adaptive static-
point conversion is applied to convert some static points to dynamic
ones. The converted points are used to capture the appearance
changes in static objects.

2D Motion Segmentation. This step aims to obtain the correspond-
ing motion label images {𝑀𝑣,𝑘 }𝑣∈V,𝑘∈K at the keyframes K . Due
to the static camera setting in the multi-view capture, it is straight-
forward to classify a pixel to be static if its flow vector is small
or 0. To this end, on each keyframe 𝑘𝑖 , we apply the RAFT model

[Wang et al. 2024a], F𝑟𝑎𝑓 𝑡 , to estimate the optical flow between the
multi-view images of the current keyframe and those of the next
keyframe. If the length of the flow is larger than 𝜆𝑟𝑎𝑓 𝑡 pixels, we
label it as dynamic; otherwise, we label it as static. A motion label
image can then be obtained as follows:

𝑀
𝑟𝑎𝑓 𝑡

𝑣,𝑘𝑖
=
����F𝑟𝑎𝑓 𝑡 (𝐼𝑣,𝑘𝑖 , 𝐼𝑣,𝑘𝑖+1)���� > 𝜆𝑟𝑎𝑓 𝑡 .

However, we find that raft motion labels {𝑀𝑟𝑎𝑓 𝑡

𝑣,𝑘
} may fail to cover

slow-moving parts of the dynamic objects in the scene, such as the
chair and the controller shown in Fig. 3. When one part of an object
is classified as static and another part as dynamic, it can result in
tearing artifacts in dynamic objects. Thus we enforce object-level
consistency for the motion layering labels. We select a view 𝑣𝑖 to
sample points from 𝑀

𝑟𝑎𝑓 𝑡

𝑣𝑖 ,𝑘𝑖
to query the SAM2 model [Ravi et al.

2024b], F𝑠𝑎𝑚 , and obtain the object-level SAM-labels𝑀𝑠𝑎𝑚
𝑣𝑖 ,𝑘𝑖

for com-
pletion. Utilizing the memory attention mechanism in SAM2, the
𝑀𝑠𝑎𝑚

𝑣𝑖 ,𝑘𝑖
for one view can be efficiently propagated to all other views,

obtaining multiview-consistent SAM-labels {𝑀𝑠𝑎𝑚
𝑣,𝑘𝑖

}𝑣∈V . The mo-
tion labels for each view are formed by combining the RAFT- and
SAM-labels:

𝑀𝑠𝑎𝑚
𝑣𝑖 ,𝑘𝑖

= F𝑠𝑎𝑚 (𝑀𝑟𝑎𝑓 𝑡

𝑣𝑖 ,𝑘𝑖
), 𝑀𝑣,𝑘𝑖 = 𝑀

𝑟𝑎𝑓 𝑡

𝑣,𝑘𝑖
+𝑀𝑠𝑎𝑚

𝑣,𝑘𝑖
.

3D Lifting. We lift the 2Dmotion labels into 3D points by associat-
ing a single-channel point motion label𝑚𝑖 to the 𝑖th Gaussian point
and rendering each ray into 2D image pixel 𝑀̃ using alpha blend-
ing (same as Eq. 1): 𝑀̃ =

∑𝑛
𝑖=0𝑇𝑖𝛼𝑖𝑚𝑖 . The per-Gaussian motion

label𝑚𝑖 is optimized through the standard differentiable Gaussian
rasterization pipeline by minimizing the loss, as:

L𝑚 =
∑︁
𝑣∈V

|𝑀̃𝑣 −𝑀𝑣 | + 𝜆𝑛𝑛𝑠𝑒𝑔

∑︁
𝑖∈P

|𝑚𝑖 −𝑚𝑛𝑛 | + 𝜆
𝑑𝑦𝑛
𝑠𝑒𝑔

∑︁
𝑖∈P

|𝑚𝑖 − 1|,

where the subscript 𝑛𝑛 is the nearest neighbor point index, 𝜆𝑛𝑛𝑠𝑒𝑔 and

𝜆
𝑑𝑦𝑛
𝑠𝑒𝑔 are two balancing hyper-parameters. The first term supervises
the rendered point motion labels 𝑀̃𝑣 using the generated motion
labels 𝑀𝑣 at the corresponding views, where the group keyframe
index 𝑘 is discarded for simplicity. The second term improves noise
resistance by enforcing local similarity of the point motion labels.
The last term encourage the points to have dynamic label, which is
effective when the multiview 2D labels are inconsistent.

Adaptive Static-Point Conversion. The lifted motion labels for
static objects are usually semantically correct. However, Since we
fixed the attributes of the static points in the GOG reconstruction,
the appearance change that occurs in some regions of the static
objects, such as moving shadows and view-dependent reflections,
may not be captured well. Fig. 4 illustrates a moving shadow exam-
ple. To address this problem, we propose converting static points to
dynamic points if: (1) their screen-space positional gradients exceed
𝜆
𝑔𝑟𝑎𝑑

𝑎𝑑𝑝
or (2) the proportion of dynamic points among their nearest

neighbors is greater than 𝜆𝑛𝑛
𝑎𝑑𝑝

. As a result, the attributes of the
Gaussian points in these regions can be optimized and cloned to
reduce the rendering errors. This adaptive layering strategy expands
the layering results from 3D lifting, improving the layering flexibil-
ity and reconstruction quality. We observe that it also improves the

ACM Trans. Graph., Vol. 44, No. 4, Article 124. Publication date: August 2025.

124:6 • Pinxuan Dai, Peiquan Zhang, Zheng Dong, Ke Xu, Yifan Peng, Dandan Ding, Yujun Shen, Yin Yang, Xinguo Liu, Rynson W.H. Lau, and Weiwei Xu

Keyframe 𝐼!,#

𝐼!,#$% in the Same Group

𝐼!,#

𝑀!,#

𝐼!,#$%

𝐼#!,#$%

𝑀$!,#$% 𝑀$!,#$%

𝐼#!,#$%

w/o Conversionw/ Conversion

Fig. 4. Adaptive static-point conversion. Pixels with a dynamic label in
images are highlighted in blue, and with a static label in white. Although
the motion labels𝑀𝑣,𝑘 for view 𝑣 at keyframe 𝑘 are semantically correct,
the layered static points on the table fail to model the moving shadow. This
causes artifacts in 𝐼𝑣,𝑘+𝜏 . The adaptive conversion mitigates the artifacts by
extending the motion labels 𝑀̃𝑣,𝑘+𝜏 to cover the intended areas.

reconstruction of newly appearing objects and previously occluded
areas, which are often under-reconstructed due to their invisibility
in keyframes. The adaptive conversion is performed every 100 iter-
ations during the optimization in the GOG reconstruction, which
will be discussed in Section 4.2.

4.2 The GOG Reconstruction
Our goal is to jointly optimize the dynamic points in canonical space
P𝑑
𝑘
, and the deformation offsets of dynamic points D𝑘 in this stage

as shown in Fig. 5. For simplicity, the group index 𝑘 is discarded
hereafter. The setD contains two kinds of deformation offsets in our
system: position offset Δx, and rotation offset Δq, since we observe
no performance improvements by allowing point scale and opacity
to change over time in our experiments. The predicted deformation
offsets transform the 𝑖th Gaussian point in the canonical space to
corresponding frame 𝑡 as:

x𝑖,𝑡 = x𝑖 + Δx𝑖,𝑡 , q𝑖,𝑡 = q𝑖 ·Δq𝑖,𝑡 .

We parameterize the deformation fields with a 4D-hashgrid [Xu
et al. 2024a] considering its faster convergence over MLPs [Yang
et al. 2024a] and the larger representation capacity over K-Planes
[Wu et al. 2024a]. The 4D-hashgrid consists of 1 spatial (𝑥𝑦𝑧) and
3 spatial-temporal (𝑥𝑦𝑡 , 𝑥𝑧𝑡 , 𝑦𝑧𝑡) hashgrids. We set the 𝑡-axis at a
relatively lower resolution due to the temporal smoothness of the
deformations. The concatenated grid features from four grids are
then decoded into deformation offsets by multi-head tiny MLPs.

Loss Functions. The GOG reconstruction is optimized by the fol-
lowing loss terms: photometric loss𝐿𝑟𝑔𝑏 , as-rigid-as-possible (ARAP)
loss 𝐿𝑎𝑟𝑎𝑝 , and temporal smoothness loss 𝐿𝑡𝑒𝑚𝑝 . The photometric
loss is calculated between the rendered image 𝐼 and the ground
truth video frames 𝐼 :

L𝑟𝑔𝑏 = (1 − 𝜆)
��𝐼 − 𝐼

�� + 𝜆𝐿𝑑𝑠𝑠𝑖𝑚 (𝐼 , 𝐼) .

Inspired by [Duan et al. 2024; Huang et al. 2024], we employ regular-
ization to encourage spatial-temporal local smoothness in motion
modeling. First, as we expect the adjacent dynamic points to share

Loss
Functions

4D-HashGrid

𝑥𝑦𝑧

𝑥𝑦𝑡

𝑥𝑧𝑡

𝑦𝑧𝑡

⊕ Δ𝐱!,#
Δ𝐪!,#

Canonical Points

Time

MLP

𝐱!

𝑡

Deformed Points

w/ Gradients w/o Gradients

Dynamic Static
Offsets

Dynamic

Static

Adaptive
Static-Point
Conversion

Fig. 5. The GOG reconstruction We employ the 4D-hashgrid [Xu et al.
2024a] to model the deformation of the layered dynamic points, and correct
false-static points during optimization.

similar deformation at each deformation timestamp, we apply the
ARAP loss as:

L𝑎𝑟𝑎𝑝 =

���Δq𝑖,𝑡 − Δq𝑛𝑛,𝑡
��� + ���Δ𝝉𝑖,𝑡 − Δ𝝉𝑛𝑛,𝑡

���
+
��� ∥x𝑖 − x𝑛𝑛 ∥ −

x𝑖 + Δx𝑖,𝑡 − x𝑛𝑛 − Δx𝑛𝑛,𝑡

 ���,

Δ𝝉𝑖,𝑡 = x𝑖 + Δx𝑖,𝑡 − ΔR𝑖,𝑡 ·x⊤𝑖 ,

where Δ𝝉 denotes the point translation offset, the subscript 𝑛𝑛 is
the index of the nearest neighbor point, ΔR is the matrix form of Δq,
and x is a row vector. While the first and second terms encourage
consistent rotation and translation offsets between neighbors, the
third term maintains the local metric length. Second, to force the
deformation of each point to be linearly smooth during a short time
window [𝑡, 𝑡 ′] in the temporal dimension, we apply L𝑡𝑒𝑚𝑝 as:

L𝑡𝑒𝑚𝑝 =

���(1 − 𝛿)Δx𝑖,𝑡 + 𝛿Δx𝑖,𝑡 ′ − x𝑖,𝑡+𝛿 (𝑡 ′−𝑡)
���

+
���(1 − 𝛿)Δq𝑖,𝑡 + 𝛿Δq𝑖,𝑡 ′ − q𝑖,𝑡+𝛿 (𝑡 ′−𝑡)

���,
where 𝛿 ∈ (0, 1) is a random perturbation. This temporal smooth
loss L𝑡𝑒𝑚𝑝 encourages constant velocity for both the point position
and rotation. The whole optimization loss is formed as:

L = L𝑟𝑔𝑏 + 𝜆𝑎𝑟𝑎𝑝L𝑎𝑟𝑎𝑝 + 𝜆𝑡𝑒𝑚𝑝L𝑡𝑒𝑚𝑝 ,

where 𝜆𝑎𝑟𝑎𝑝 and 𝜆𝑡𝑒𝑚𝑝 are two balancing hyper-parameters.

Progressive Frame Sampling. During the optimization of the GOG
reconstruction, we progressively sample frames from near to far
during the first 𝑁 training iterations. This helps warm up the defor-
mation field learning and improves long-range motion reconstruc-
tion as demonstrated in Fig. 9. The possibility of timestamp 𝑡 being
sampled in iteration 𝑛 ∈ (0, 𝑁] is:

𝑝 (𝑛, 𝑡) = 𝑝′ (𝑛, 𝑡)∑𝑇
𝜏=0 𝑝

′ (𝑛, 𝜏)
, 𝑝′ (𝑛, 𝑡) =

{1 if 𝑡 ≤ ⌊𝑇 · 𝑛/𝑁 ⌋
0 else ,

where𝑇 is the group length. We set 𝑁 to half of the total training it-
erations, and evenly sample timestamps in the remaining iterations.

4.3 The GOG Compression
In this section, we describe how to apply vector quantization, bit
quantization, and H.265 encoding to compress GOG, significantly
reducing its storage to allow online transmission at the cost of
minimally reduced rendering quality.

ACM Trans. Graph., Vol. 44, No. 4, Article 124. Publication date: August 2025.

4D Gaussian Videos with Motion Layering • 124:7

Base Color 𝐜!"#$Opacity 𝑜 Scaling 𝐬Rotation 𝐪 SH Coefficient 𝐜%$#&

Codebook

…ID

Vector QuantizationBit Quantization

R

G

B

Fig. 6. Gaussian point quantization.We use bit quantization to discretize
the floating point values of {q, 𝑜, s, c𝑏𝑎𝑠𝑒 }, and apply vector quantization
to efficiently store high-order SH coefficients c𝑟𝑒𝑠𝑡 in a small codebook.

Gaussian Point Quantization. As shown in Fig. 6, we use different
quantization techniques for static and dynamic Gaussian points in
the canonical space. We first quantize their 32-bit Gaussian point
attributes in float format {q, 𝑜, s, c𝑏𝑎𝑠𝑒 } using fewer bits to reduce
the model size. 8 bits are used for attributes with a small range of
values, including q, 𝑜 , and s. For s, we evenly discretize the value in
the range of [2−𝑛_𝑏𝑖𝑡 , 1] times the scene scale. In practice, we find
that 𝑛_𝑏𝑖𝑡 = 12 is sufficient to quantize s for medium-sized scenes.
The ranges of the quantized attributes are all recorded for recovery.

Second, the 3rd-order SH used in 3DGS [Kerbl et al. 2023] cor-
responds to 48 float coefficients, which imposes a high storage
requirement for the Gaussian point cloud. While the 3-order color
features can be divided into two parts: the base color c𝑏𝑎𝑠𝑒 ∈ R3

and the high-order coefficients c𝑟𝑒𝑠𝑡 ∈ R45, we empirically find that
c𝑟𝑒𝑠𝑡 accounts for 94% of the storage in the color representation
but contributes only ~15% to the outgoing radiance energy. Hence,
we apply vector quantization to c𝑟𝑒𝑠𝑡 to significantly reduce the
model size. Specifically, we cluster similar c𝑟𝑒𝑠𝑡 and compute the
corresponding cluster centers for rendering. An integer cluster in-
dex is assigned to each Gaussian point to locate its closest cluster
center in a small codebook of size 𝑁𝑣𝑞 . Our experiments reveal that
𝑁𝑣𝑞 = 1024 is enough to produce high-quality rendering results.

Deformation Encoding. Since the deformation offsets of points
(comprising Δx and Δq) are time-varying high-dimensional offset
features, we apply H.265 video compression codec [Sullivan et al.
2012; Sze et al. 2014] to the offsets by organizing them into 2D offset
maps at each timestamp using Morton sorting [Morton 1966]. The
deformation offsets within a group are typically in a small range,
making them highly resilient to bit quantization in H.265 encoding.
After Morton sorting using deformation offsets, each dynamic

point is assigned with a 2D pixel position, efficiently mapping the
3D point cloud structure to the 2D image space. The deformation
offsets are stored in the corresponding pixel, forming the offset
maps containing 3-channel Δx and 4-channel Δq. As Δx is crucial
for preserving the rendering quality, we follow [Wang et al. 2024c]
to quantize it using 16 bits and then splitting its high and low halves
into two 8-bit RGB images. For Δq, we use 8-bit grayscale images
to quantize each of its channels and concatenate the four images
into one.

The quantized offset images are then compressed using the H.265
codec into three 8-bit MP4 tracks: high-order Δx, low-order Δx, and
the concatenated Δq. The high-order Δx is encoded losslessly and
the latter two are compressed using a Constant Rate Factor (CRF)
value of 20.

4.4 Real-Time Rendering
The rendering of 4DGV on each timestamps follows the Gauss-
ian rasterization pipeline in 3DGS [Kerbl et al. 2023]. We deform
the dynamic points in canonical space P𝑑

𝑘
to the corresponding

timestamp by applying the deformation offsets D𝑘 . The deformed
dynamic points are concatenated with static points P𝑠

𝑘
to render

the complete scene. To smooth out sudden changes during group
transitions, we introduce an overlapping window between groups
for seamless rendering. Within this window, we linearly scale the
opacity of P𝑑

𝑘
from one to zero for fade-out, while simultaneously

scaling the opacity of P𝑑
𝑘+1 from zero to one for fade-in.

We have also implemented an online web player for 4DGV based
onWebGL, which supports real-time streaming playback over the In-
ternet using PCs, pads and mobile phones. However, since the paral-
lel prefix sumused in CUDA implementation in 3DGS is not available
in WebGL, we rely on converting each Gaussian point into a quadri-
lateral for the rasterization using shaders as in Splat [Kwok 2023].
It results in slightly different rendering results in the web player,
comparing to the CUDA-based Gaussian rasterization pipeline.

5 EXPERIMENTS
We implement our 4DGV approach and conduct all experiments on a
single NVIDIA RTX 4090 GPU, achieving state-of-the-art rendering
quality while significantly reducing the model size. As an example,
our method achieves an average 4DGV video size of 21.2 MB on
Neu3DV [Li et al. 2022b] dataset, and the videos contain initial points
of 3.6 MB for the first frame and streamable GOGs of 1.76 MB per
second on average. Moreover, the adaptive motion layering labels
25.4% points as dynamic on this dataset, reducing the computation
and storage cost of the deformations by 4×. We report comparisons,
compression performance, and ablation studies in the following.
More details and results can be found in the supplementary file and
video.

5.1 Implementation Details
For the group initialization, we train the first group with 20k itera-
tions, while subsequent groups utilize 5k for fast refinement. The
3D lifting of motion labels are trained for 400 iterations per group,
and the GOG reconstruction with deformation is trained for 400
iterations per frame. While most hyperparameters from Gaussian
rasterization [Kerbl et al. 2023] and 4D-hashgrid [Xu et al. 2024a]
have been retrained, we have made adjustments by increasing the
opacity culling threshold to 0.05 to suppress floaters and a lighter
MLP deformation decoder for improved computational efficiency.
The default length of frame groups is set to 30 and use 5-frame
overlapping window between groups for smooth transition. Other
hyperparameter settings are detailed in the supplementary material.

5.2 Evaluation Settings
Evaluation Datasets. Wehave conducted evaluations of ourmethod

on three public datasets for multiview dynamic reconstruction:
Neu3DV [Li et al. 2022b], MeetRoom [Li et al. 2022a], and Tech-
nicolor [Sabater et al. 2017]. Our evaluation follows established
evaluation conventions, except using all available frames in the
Technicolor dataset instead of limiting the evaluation to 50-frame

ACM Trans. Graph., Vol. 44, No. 4, Article 124. Publication date: August 2025.

124:8 • Pinxuan Dai, Peiquan Zhang, Zheng Dong, Ke Xu, Yifan Peng, Dandan Ding, Yujun Shen, Yin Yang, Xinguo Liu, Rynson W.H. Lau, and Weiwei Xu

Table 1. Quantitative comparisons on the MeetRoom [Li et al. 2022a], Technicolor [Sabater et al. 2017], and our DeskGames datasets. We report
the PSNR, SSIM, and LPIPS metrics, along with the model size (in MB), to evaluate both rendering quality and storage efficiency. The reported scores are
computed using their released code.

Methods MeetRoom Technicolor DeskGames
PSNR ↑ SSIM ↑ LPIPS ↓ Size ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Size ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Size ↓

Grid4D [Xu et al. 2024a] 30.65 0.948 0.163 297 30.37 0.888 0.210 378 26.29 0.863 0.228 334
STG [Li et al. 2024] 29.51 0.932 0.209 71.4 32.35 0.905 0.186 436 28.35 0.902 0.190 396
3DGStream [Sun et al. 2024] 30.88 0.947 0.186 2287 25.48 0.708 0.446 2615 30.51 0.917 0.173 2243
Ex4DGS [Lee et al. 2024c] 31.03 0.946 0.186 75.0 31.33 0.888 0.229 365 29.48 0.906 0.180 386
4DGS [Yang et al. 2024b] 31.94 0.953 0.177 2196 28.92 0.798 0.347 3070 30.11 0.905 0.199 2616
V3 [Wang et al. 2024c] 26.12 0.864 0.317 81.8 25.08 0.746 0.340 199 26.05 0.830 0.267 225
Ours 32.31 0.957 0.173 19.2 31.77 0.893 0.197 40.2 30.89 0.920 0.168 34.5

Table 2. Quantitative comparisons on the Neu3DV [Li et al. 2022b]
datasets with 14 baselines. We report the PSNR, model size (in MB),
reconstruction time (in mins), and rendering FPS on average. The metrics
are extracted from original papers. ∗: metrics only on the 𝑓 𝑙𝑎𝑚𝑒_𝑠𝑎𝑙𝑚𝑜𝑛

scene.

Methods PSNR Size Time FPS

DyNeRF∗ [Li et al. 2022b] 29.58 28 80640 0.015
StreamRF [Li et al. 2022a] 28.26 9420 75 8
NeRFPlayer [Song et al. 2023] 30.69 5134 3600 0.05
HyperReel [Attal et al. 2023] 31.10 360 N/A 2.0
K-Planes [Fridovich-Keil et al. 2023] 31.63 311 108 N/A
MixVoxels-X [Wang et al. 2023d] 31.73 500 300 4.6
MSTH [Wang et al. 2023b] 32.37 135 20 15
4DGaussians [Wu et al. 2024a] 31.15 90 40 30
Grid4D [Xu et al. 2024a] 31.49 N/A N/A N/A
STG [Li et al. 2024] 32.05 200 100 140
Ex4DGS [Lee et al. 2024c] 32.11 115 36 121
4DGS [Yang et al. 2024b] 32.01 N/A N/A 114
4DRotorGS [Duan et al. 2024] 31.62 N/A 60 277
3DGStream [Sun et al. 2024] 31.67 2430 60 215
Ours 32.55 21 73 185

fragments as done in previous methods. As the aforementioned
three datasets typically contain only 200–300 frames, we have fur-
ther evaluated and compared our method on longer video sequences:
the Flame Salmon scene with 1,200 frames from the Neu3DV dataset,
the Dance3 with 1,600 frames from the MobileStage [Xu et al. 2024b]
dataset, and three scenes with 1200 frames from the ENeRF-Outdoor
[Lin et al. 2022] dataset.
Furthermore, we have created the DeskGames dataset to estab-

lish a more challenging benchmark for evaluation. We use a syn-
chronized multiview system with 21 forward-facing cameras for
capturing scenes at a resolution of 2, 560×1, 440. The dataset com-
prises three scenes (𝐶𝑢𝑏𝑒+, 𝐷𝑜𝑚𝑖𝑛𝑜+, and 𝑈𝑁𝑂+), each spanning
6,000 frames and featuring relatively fast motions and frequent in-
teractions between objects. In line with established practices [Li
et al. 2022a,b], we have designated the centrally located cam7 as
the test view. Note that 6,000 frames pose a challenge for existing
methods, we have extracted four 300-frame clips (𝐶𝑢𝑏𝑒 , 𝐷𝑜𝑚𝑖𝑛𝑜 ,
𝑅𝑒𝑎𝑑𝑖𝑛𝑔, and 𝑈𝑁𝑂) to form a subset for comparison with exisitng

Table 3. Quantitative comparisons on long videos. We report the PSNR,
and model size (in MB). Metrics are collected from TGH [Xu et al. 2024c],
except for ours. ∗: per-frame reconstruction.

Methods
Neu3DV MobileStage ENeRF-Outdoor

(1200 frames) (1600 frames) (1200 frames)
PSNR ↑ Size ↓ PSNR ↑ Size ↓ PSNR ↑ Size ↓

ENeRF 23.48 830 19.14 1400 25.02 780
3DGS∗ 28.61 37500 28.02 106000 24.02 115000
4DGS 28.89 2680 23.22 1830 24.64 2450
TGH 29.44 90 27.29 420 24.74 310
Ours 29.26 58 28.21 193 25.81 255

mehtods in Table 1. We have reported the results of our method on
the complete videos in Table 5.

Baselines and Metrics. We first compare with six latest methods
(i.e., Grid4D [Xu et al. 2024a], STG [Li et al. 2024], Ex4DGS [Lee
et al. 2024c], 4DGS [Yang et al. 2024b], 3DGStream [Sun et al. 2024],
and V3 [Wang et al. 2024c]) on the MeetRoom [Li et al. 2022a],
Technicolor [Sabater et al. 2017], and our DeskGames datasets, by
using their official codes and default configurations. Note that we
constrain the maximum point number to 3𝑒6 for 4DGS [Yang et al.
2024b] to avoid out-of-memory issues on the testing GPUwith 24GB
VRAM. V3 [Wang et al. 2024c] is proposed for human performance
rendering and use NeuS2 [Wang et al. 2023c] to initialize keyframe
point cloud. We initialize it using 3DGS [Kerbl et al. 2023] instead,
as NeuS2 cannot handle scene-level reconstruction. We then com-
pare our method with 14 existing volumetric video methods on
the widely-used Neu3DV [Li et al. 2022b] dataset. Their results are
directly obtained from original papers. Finally, we compare to EN-
eRF [Lin et al. 2022], per-frame 3DGS [Kerbl et al. 2023], 4DGS [Yang
et al. 2024b], and TGH [Xu et al. 2024c] on long video sequences from
the Neu3DV, MobileStage [Xu et al. 2024b], and ENeRF-Outdoor
[Lin et al. 2022] datasets.

We use three metrics to measure the rendering quality: the Signal-
to-Noise Ratio (PSNR), Structure Similarity Index Measure (SSIM),
and Learned Perceptual Image Patch Similarity (LPIPS). We also
report the model size, reconstruction time, and FPS for comparisons.
The metrics of each dataset are averaged over all selected scenes.

ACM Trans. Graph., Vol. 44, No. 4, Article 124. Publication date: August 2025.

4D Gaussian Videos with Motion Layering • 124:9

Ours 4DGS 3DGStream Grid4D Ex4DGS STG

C
oo

k
Sp

in
ac

h
fr
am

e#
17
4

V
R

H
ea

ds
et

fr
am

e#
25
7

B
ir

th
da

y
fr
am

e#
13
8

Th
ea

te
r

fr
am

e#
13
6

V3

R
ea

di
ng

fr
am

e#
21
7

GT

Fig. 7. Qualitative comparisons on fast motions. Our method reconstructs objects under challenging fast motions accurately, where previous methods
tend to produce blurry results.

St
ep

In
fr

am
e#

66
D
is
cu

ss
io
n

fa
m

e#
90

B
ir
th
da

y
fr

am
e

#9
3

Ours GT4DGS 3DGStream Grid4D Ex4DGS STG

Tr
ai
n

fr
am

e
#8

2
Pa

in
te
r

fr
am

e
#2

2

V3

Fig. 8. Qualitative comparisons on newly appeared objects. Our method renders newly emerging objects of high quality, while previous methods result
in incomplete reconstructions.

ACM Trans. Graph., Vol. 44, No. 4, Article 124. Publication date: August 2025.

124:10 • Pinxuan Dai, Peiquan Zhang, Zheng Dong, Ke Xu, Yifan Peng, Dandan Ding, Yujun Shen, Yin Yang, Xinguo Liu, Rynson W.H. Lau, and Weiwei Xu

Table 4. Comparison with V3 [Wang et al. 2024c] on compression. We
report the average PSNR and model size (in MB) on the Neu3DV dataset.
Metrics before and after compression are denoted as "w/o Comp." and "w/
Comp." respectively.

Methods V3 Ours
w/o Comp. w/ Comp. w/o Comp. w/ Comp.

PSNR ↑ 31.27 25.45 32.56 32.55
Size ↓ 4683 113 255 21

Table 5. Metrics of our method on the full-length DeskGames dataset.
We use the averaged PSNR, SSIM, and LPIPS to measure the rendering
quality, and also report the model size (in MB) and the number of points.

Scenes PSNR ↑ SSIM ↑ LPIPS ↓ Size ↓ Points ↓
𝐶𝑢𝑏𝑒+ 30.610 0.9185 0.1685 299 7.43M
𝐷𝑜𝑚𝑖𝑛𝑜𝑠+ 31.702 0.9294 0.1585 410 7.90M
𝑈𝑁𝑂+ 30.550 0.9215 0.1598 675 13.8M

The metrics of our method and V3 are both from the compressed
models unless otherwise specified.

5.3 Main Results
Overall, our method achieves the best performance on the Neu3DV,
MeetRoom, and DeskGames datasets and placed second on the
Technicolor dataset in terms of novel view synthesis rendering
quality as shown in Table 1 and 2. We found that the improvement
in rendering quality lies in the more accurate modeling of object
motions, especially for:
(1) Fast Motions. Our GOG structure and progressive frame sam-

pling strategy improves the reconstruction of fast motions as
shown in Fig. 7. We observe 4DGS perform relatively better,
while it requires about 100× storage overhead compared to our
method. In contrast, our 4DGV approach can reconstruct these
objects under fast and large motions accurately.

(2) Newly Appeared Objects. As shown in Fig. 8, newly emerging
objects transiting from out-of-view to in-view are difficult for
existing methods to model due to insufficient observations. Our
method produces obviously better reconstruction results for
these emerging objects. In our experiments, the re-initialization
with the original point densification strategy is able to grow
points to explain object emergence, without the need to explic-
itly add points to expected positions.

We observe that V3 [Wang et al. 2024c] has successfully recon-
structed the complete objects under complex motions, although
it is designed for human reconstruction and rendering. However,
its renderings exhibit severe artifacts introduced by compression.
We hypothesize that this is because V3 directly quantizes and en-
codes the point attributes of the entire scene. This compression
strategy may performs well for human performance rendering but
fails to handle larger scenes effectively. Table 4 compares the perfor-
mance of V3 and our method before and after compression. It shows
that our choice to encode the point deformation offsets reduces the
compression-induced loss in rendering quality.

Table 6. Ablation on the GOG reconstruction. We report the average
rendering quality, model size (in MB), and compression rate (CR) on the
Neu3DV dataset.

Methods PSNR ↑ SSIM ↑ LPIPS ↓ Size ↓ CR ↓
Full 32.554 0.9488 0.1282 21.21 8.32%
w/o Reg. 32.535 0.9486 0.1277 22.46 8.91%
w/o Prg. 32.448 0.9480 0.1285 20.37 7.97%
w/o Adp. 32.412 0.9476 0.1291 19.58 8.13%
w/o Rfn. 31.205 0.9398 0.1353 20.62 8.86%

D
is
cu

ss
io
n

fr
am

e#
19
5

Ours: w/o Prg. GTOurs: Full

3DGStream Grid4D Ex4DGS STG 4DGS

Fig. 9. Comparisons and ablation on progressive frame sampling.Our
full method reconstructs the fast-moving hand in better quality.

We also evaluate the scalability of the proposed 4DGV method.
We first compare our method with the TGH [Xu et al. 2024c] method
(which is most recently proposed for handling long videos) on long
video sequences. Table 3 reports the results. Our method outperform
other methods in rendering quality except for the Flame Salmon
scene from the Neu3DV dataset. On average, our compact represen-
tation is 36% smaller than TGH. Next, we report the results of our
4DGV approach for reconstructing 6000-frame videos within our
captured DeskGames dataset in Table 5.

5.4 Ablations
We conduct ablation studies based on the Neu3DV [Li et al. 2022b]
dataset, to verify the effectiveness of each module and to explain
the configuration choices in our 4DGV approach. We first ablate
four key components from our method in Table 6:

(1) w/o Reg.: We remove the physics-inspired ARAP and temporal
smoothness regularizations during deformation, resulting in
slightly decreased rendering quality and increased model size.

(2) w/o Prg.: We adopt uniform frame sampling within each group
instead of progressive frame sampling from near to far during
deformation training. This ablation causes non-negligible drops
in rendering quality as it cannot handle fast and large motions
(see Figure 9 for comparison).

(3) w/o Adp.: We remove the adaptive static-point conversion,
which degrades the rendering quality due to the lack of lay-
ering flexibility (see Figure 4 for example).

(4) w/oRfn.:We remove the re-initialization refinement at keyframes
between deformation groups, which tends to accumulate errors
from previous reconstruction, as shown in Figure 10.

ACM Trans. Graph., Vol. 44, No. 4, Article 124. Publication date: August 2025.

4D Gaussian Videos with Motion Layering • 124:11

30

31

32

33

0 30 60 90 120 150 180 210 240 270 300

PS
N

R

Frame Number

 w/ Refinement

 w/o Refinement

Fig. 10. Ablation on refinement initialization. Per-frame metrics on the
Neu3DV dataset reveal the error accumulation issue without refinement.
The refinement initialization on keyframe timestamps stops the error prop-
agation.

Table 7. Ablation on group length. We compare the PSNR, model size (in
MB), training time (in minutes) when modeling different number of frames
within a deformation group.

Group Length 10 20 30 40 50

PSNR ↑ 32.583 32.574 32.554 32.182 32.207
Size ↓ 36.74 26.24 21.21 19.22 16.44
Time ↓ 102.8 88.8 72.5 65.5 64.0

The comparisons in Table 6 generally verify the effectiveness of our
method and demonstrate that our method achieves the ideal balance
between rendering results and model sizes.

We then investigate how different frame group lengths affect our
method. We report the results of our method trained with different
frame group lengths in Table 7. We can see that larger group length
intuitively results in lower rendering quality and smaller model
sizes, as fewer groups of deformable Gaussians would be used. The
increased training time when using smaller group lengths is caused
by more frequent re-initialization and motion layering on keyframe
timestamps. We set the frame group length to 30 for a balance
between the rendering quality, model size, and training time.

Our compressed 4DGV representation supports real-time decod-
ing and playback over the Internet due to fast decoding and the
reduced model size. In our experiment, the online decoding of the
deformation offsets takes an average of 3.9 ms per frame on the
Neu3DV dataset. We now investigate the effectiveness of motion
layering, Gaussian point quantization, and deformation encoding
in reducing the model size in Table 8:

(1) Config.#1: Directly chaining independent GOGs leads to signif-
icant redundancy in both storage and computation.

(2) Config.#2: Motion layering reduces the total point size by 5× by
reusing static points across groups. It also reduces the number of
dynamic points to be modeled in each group, leading to training
acceleration and reduction in deformation data. Meanwhile,
we observe improved rendering quality with motion layering.
The reasons are two-fold: First, allowing all points to deform
over time would deteriorate the quality in those completely
static regions. Second, fewer dynamic points would reduce the
collisions in our 4D-hashgrid-based representation.

Table 8. Ablation on model size. We ablate different modules to evaluate
their impact on the reconstructed model size on the Neu3DV dataset. We
report the model size (in MB), PSNR, and reconstruction time (in minutes).
∗: as the extracted offsets are larger than the deformation fields, we report
the size of the deformation fields instead.

Config. #1 #2 #3 Full

Motion Layering ✓ ✓ ✓
Point Quantization ✓ ✓
Deformation Encoding ✓

Size (points) 663 120 17.2 12.8
Size (deformations) 479∗ 220 238 8.4
Size (whole model) 1142 340 255 21.2
Compression Rate 100% 30% 22% 1.9%
PSNR 32.28 32.56 32.56 32.55
Time 194.5 62.7 72.5 73.4

Table 9. Ablation on Gaussian point quantization. Columns 2-5 list the
bit size used for bit quantization, and the sixth column lists the codebook
size for vector quantization. "-" denotes no quantization. We report the
PSNR, the model size (in MB), and the compression rate on the Neu3DV-
cut_roasted_beef frame#0. Our default configuration is highlighted .

Config. q 𝑜 s c𝑏𝑎𝑠𝑒 c𝑟𝑒𝑠𝑡 PSNR ↑ Size ↓ CR ↓
#1 - - - - - 34.26 37.14 100%
#2 - - - - 210 34.26 10.31 28%
#3 8 8 12 8 210 34.21 3.65 9.8%
#4 8 8 8 8 210 32.01 2.97 8.0%
#5 8 8 12 8 28 33.91 3.55 9.6%
#6 8 8 12 8 No SH 33.88 3.50 9.4%

(3) Config.#3: The Gaussian point quantization can compress the
point cloud size by 7×, at the cost of slightly increased training
time.

(4) Full: The point deformation offsets extracted from the trained
deformation fields are efficiently compressed by 28× using the
H.265 codec. Our full strategy acheives a total compression rate
of 1.85% compared to config.#1.

We then compare different parameter choices on Gaussian point
quantization in Table 9. Quantization for c𝑟𝑒𝑠𝑡 leads to large com-
pression rate at the cost of the rendering quality drop in highly
view-dependent area (Fig. 11 top). Quantization for q, 𝑜, c𝑏𝑎𝑠𝑒 using
8 bits further reduce the model size with negligible quality loss. Our
default setting uses 12 bits to quantize the point scaling s. In contrast,
using only 8 bits leads to notable degradation in rendering quality.
We can also see that removing or reducing the codebook size for
the high-order SH coefficients c𝑟𝑒𝑠𝑡 would degrade the rendering
quality.
Finally, we evaluate the different compression configurations of

different source data and bitrate in deformation offset encoding. We
also test using DRACO [Google 2017] to further compress the Gauss-
ian point cloud. The results are reported in Table 10. We involves

ACM Trans. Graph., Vol. 44, No. 4, Article 124. Publication date: August 2025.

124:12 • Pinxuan Dai, Peiquan Zhang, Zheng Dong, Ke Xu, Yifan Peng, Dandan Ding, Yujun Shen, Yin Yang, Xinguo Liu, Rynson W.H. Lau, and Weiwei Xu

Table 10. Ablation on deformation encoding. We report the PSNR,
model size (in MB) after compression, and compression rate (CR) on the
Neu3DV dataset. "-" denotes no compression. Our default configuration is
highlighted .

Config. Source CRF265 QPDRC PSNR ↑ Size ↓ CR ↓
#1 - - - 32.561 254.9 100%
#2 ofs 20 - 32.554 23.13 9.1%
#3 ofs 20 20 32.554 21.21 8.3%
#4 ofs 20 12 32.481 20.23 7.9%
#5 ofs 30 12 32.439 16.65 6.5%
#6 ori 20 20 32.347 17.38 6.8%
#7 dif 20 20 32.113 23.38 9.2%

C
ut

 R
oa

st
ed

 B
ee

f
fr
am

e#
0

Config. #1 Config. #4Table 9: Config. #3 GT

C
of

fe
e

M
ar

ti
ni

fr
am

e#
26
6

Config. #1 Config. #5Table 10: Config. #3 GT

Fig. 11. Qualitative comparisons on the GOG compression. Top: com-
parisons of Gaussian point quantization configurations in Table 9. Bottom:
comparisons of deformation encoding configurations in Table 10.

three different source data for H.265 encoding: "ofs" directly en-
codes the offset {Δx,Δq}, "ori" encodes the original value by adding
the attributes of canonical points with the offsets {x + Δx, q + Δq},
and "dif " encodes the differences between offsets of adjacent times-
tamps {Δx𝑡+1−Δx𝑡 ,Δq𝑡+1−Δq𝑡 }. The Constant Rate Factor in H.265
[Sullivan et al. 2012; Sze et al. 2014] codec (CRF265) controls the
balance between video quality and file size (lower CRF values result
in higher video quality with larger file sizes). The QPDRC denotes
the Quantization bit used for point Position in DRACO. We choose
the Config.#3 as default, which leads to minimal performance drop
(Fig. 11 bottom) in rendering quality while reducing the model size
by 10×.

6 CONCLUSION
In this paper, we have proposed a novel 4D Gaussian Video (4DGV)
approach for creating and streaming high-fidelity volumetric videos
for dynamic scenes. Our method learns a novel streamable group of
Gaussians (GOG) representation based on motion layering, where
each GOG obtains static and dynamic points via lifting 2D segmen-
tation into 3D in motion layering and represents the deformation of
dynamic points as the temporal offsets of their attributes. We pro-
pose 3D lifting and adaptive static-point conversion to handle the
appearance change (e.g., moving shadows and reflections) of static
objects through optimization, and the progressive frame-sampling

M
ot

io
n

La
be

l
R

en
de

ri
ng

G
T

frame#188 frame#190 frame#193

Fig. 12. A failure case on DeskGames-Dominos. When the small domi-
noes fall quickly, we observe both motion layering (blue: dynamic, white:
static) and deformation rendering errors.

strategy to facilitate optimization of offsets for the dynamic points.
In addition, we investigate compression techniques to support real-
time streaming of 4DGV and show that our GOG representation
can be significantly compressed without sacrificing accuracy. We
have conducted extensive experiments on standard benchmarks,
which demonstrate that our method outperforms state-of-the-art
volumetric video approaches, producing superior rendering quality
for long videos with complex motions while requiring minimum
storage overheads.
For limitations, first, the adaptive motion layering may still fail

to label small and fast-moving objects (Fig. 12). Second, our method
lacks long-term correspondence for dynamic points since we model
the scene motion within each group separately. This may cause our
method to lose track of reappearing objects.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their constructive com-
ments. We also thank Tongchen Zhang, Yaohui Niu, and Muwei
Zhou for their assistance with dataset capturing, as well as Xiuchao
Wu and Xin Zhang for their insightful discussions. Weiwei Xu is
partially supported by NSFC grant No. 62421003, and Xinguo Liu is
partially supported by NSFC grant No. 62032011. This paper is par-
tially supported by the Yongjiang Innovation Project No. 2025Z062,
a project from the Hong Kong Productivity Council (Ref.: 9231463),
Ant Group, and Information Technology Center and State Key Lab
of CAD&CG, Zhejiang University.

REFERENCES
Benjamin Attal, Jia-Bin Huang, Christian Richardt, Michael Zollhöfer, Johannes Kopf,

Matthew O’Toole, and Changil Kim. 2023. HyperReel: High-Fidelity 6-DoF Video
With Ray-Conditioned Sampling. In CVPR.

Shariq Farooq Bhat, Reiner Birkl, Diana Wofk, Peter Wonka, and Matthias Müller.
2023. Zoedepth: Zero-shot transfer by combining relative and metric depth.
arXiv:2302.12288 (2023).

Thomas Brox and Jitendra Malik. 2010. Large displacement optical flow: descriptor
matching in variational motion estimation. IEEE TPAMI (2010).

ACM Trans. Graph., Vol. 44, No. 4, Article 124. Publication date: August 2025.

4D Gaussian Videos with Motion Layering • 124:13

Michael Broxton, John Flynn, Ryan Overbeck, Daniel Erickson, Peter Hedman, Matthew
DuVall, Jason Dourgarian, Jay Busch, Matt Whalen, and Paul Debevec. 2020. Im-
mersive Light Field Video with a Layered Mesh Representation. ACM TOG (2020).

Ang Cao and Justin Johnson. 2023. HexPlane: A Fast Representation for Dynamic
Scenes. In CVPR.

Jason Chang, Donglai Wei, and John W Fisher. 2013. A video representation using
temporal superpixels. In CVPR.

Yihang Chen, Qianyi Wu, Weiyao Lin, Mehrtash Harandi, and Jianfei Cai. 2024. HAC:
Hash-grid Assisted Context for 3D Gaussian Splatting Compression. In ECCV.

Carl Doersch, Ankush Gupta, Larisa Markeeva, Adria Recasens, Lucas Smaira, Yusuf
Aytar, Joao Carreira, Andrew Zisserman, and Yi Yang. 2022. Tap-vid: A benchmark
for tracking any point in a video. In NeurIPS.

Carl Doersch, Yi Yang, Mel Vecerik, Dilara Gokay, Ankush Gupta, Yusuf Aytar, Joao
Carreira, and Andrew Zisserman. 2023. Tapir: Tracking any point with per-frame
initialization and temporal refinement. In ICCV.

Zheng Dong, Ke Xu, Yaoan Gao, Qilin Sun, Hujun Bao, Weiwei Xu, and Rynson WH
Lau. 2023. SAILOR: Synergizing Radiance and Occupancy Fields for Live Human
Performance Capture. ACM TOG (2023).

Yuanxing Duan, Fangyin Wei, Qiyu Dai, Yuhang He, Wenzheng Chen, and Baoquan
Chen. 2024. 4D-Rotor Gaussian Splatting: Towards Efficient Novel-View Synthesis
for Dynamic Scenes. In SIGGRAPH.

Jarek Duda. 2014. Asymmetric numeral systems: entropy coding combining speed
of Huffman coding with compression rate of arithmetic coding. arXiv:1311.2540
(2014).

Zhiwen Fan, Kevin Wang, Kairun Wen, Zehao Zhu, Dejia Xu, and Zhangyang Wang.
2023. LightGaussian: Unbounded 3D Gaussian Compression with 15x Reduction
and 200+ FPS. arXiv:2311.17245 (2023).

Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbæk Warburg, Benjamin Recht, and
Angjoo Kanazawa. 2023. K-Planes: Explicit Radiance Fields in Space, Time, and
Appearance. In CVPR.

Bastian Goldlücke, Marcus A Magnor, and Bennett Wilburn. 2002. Hardware-
Accelerated Dynamic Light Field Rendering.. In VMV.

Google. 2017. Draco 3D Graphics Compression. https://github.com/google/draco
Zeqi Gu, Wenqi Xian, Noah Snavely, and Abe Davis. 2023. Factormatte: Redefining

video matting for re-composition tasks. ACM TOG (2023).
Adam W Harley, Zhaoyuan Fang, and Katerina Fragkiadaki. 2022. Particle video

revisited: Tracking through occlusions using point trajectories. In ECCV.
Yi-Hua Huang, Yang-Tian Sun, Ziyi Yang, Xiaoyang Lyu, Yan-Pei Cao, and Xiaojuan Qi.

2024. SC-GS: Sparse-Controlled Gaussian Splatting for Editable Dynamic Scenes. In
CVPR.

Tak-Wai Hui, Xiaoou Tang, and Chen Change Loy. 2018. Liteflownet: A lightweight
convolutional neural network for optical flow estimation. In CVPR.

ISO. 2018a. PCC WD G-PCC (Geometry-Based PCC). Standard. International Organiza-
tion for Standardization.

ISO. 2018b. PCC WD V-PCC (Video-Based PCC). Standard. International Organization
for Standardization.

R. Jain and K. Wakimoto. 1995. Multiple perspective interactive video. In International
Conference on Multimedia Computing and Systems.

Joel Janai, Fatma Guney, Anurag Ranjan, Michael Black, and Andreas Geiger. 2018.
Unsupervised learning of multi-frame optical flow with occlusions. In ECCV.

H. Kalva. 2006. The H.264 Video Coding Standard. IEEE MultiMedia (2006).
Nikita Karaev, Ignacio Rocco, Benjamin Graham, Natalia Neverova, Andrea Vedaldi,

and Christian Rupprecht. 2024. Cotracker: It is better to track together. In ECCV.
Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 2023.

3D Gaussian Splatting for Real-Time Radiance Field Rendering. ACM TOG (2023).
Kevin Kwok. 2023. Splat: A WebGL Implementation of A Real-time Renderer for 3D

Gaussian Splatting for Real-Time Radiance Field Rendering. https://github.com/
antimatter15/splat

Junoh Lee, ChangYeon Won, Hyunjun Jung, Inhwan Bae, and Hae-Gon Jeon. 2024c.
Fully Explicit Dynamic Guassian Splatting. In NeurIPS.

Joo Chan Lee, Daniel Rho, Xiangyu Sun, Jong Hwan Ko, and Eunbyung Park. 2024b.
Compact 3D Gaussian Representation for Radiance Field. In CVPR.

Yao-Chih Lee, Erika Lu, Sarah Rumbley, Michal Geyer, Jia-Bin Huang, Tali Dekel, and
Forrester Cole. 2024a. Generative Omnimatte: Learning to Decompose Video into
Layers. arXiv:2411.16683 (2024).

Lingzhi Li, Zhen Shen, Zhongshu Wang, Li Shen, and Ping Tan. 2022a. Streaming
radiance fields for 3d video synthesis. In NeurIPS.

Tianye Li, Mira Slavcheva, Michael Zollhöfer, Simon Green, Christoph Lassner, Changil
Kim, Tanner Schmidt, Steven Lovegrove, Michael Goesele, Richard Newcombe, and
Zhaoyang Lv. 2022b. Neural 3D Video Synthesis From Multi-View Video. In CVPR.

Zhan Li, Zhang Chen, Zhong Li, and Yi Xu. 2024. Spacetime Gaussian Feature Splatting
for Real-Time Dynamic View Synthesis. In CVPR.

Geng Lin, Chen Gao, Jia-Bin Huang, Changil Kim, Yipeng Wang, Matthias Zwicker,
and Ayush Saraf. 2023. OmnimatteRF: Robust Omnimatte with 3D Background
Modeling. In ICCV.

Haotong Lin, Sida Peng, Zhen Xu, Yunzhi Yan, Qing Shuai, Hujun Bao, and Xiaowei
Zhou. 2022. Efficient Neural Radiance Fields for Interactive Free-viewpoint Video.
In SIGGRAPH Asia Conference Proceedings.

Han Ling, Quansen Sun, Zhenwen Ren, Yazhou Liu, Hongyuan Wang, and Zichen
Wang. 2022. Scale-flow: Estimating 3d motion from video. In ACM MM.

Erika Lu, Forrester Cole, Tali Dekel, Andrew Zisserman, William T Freeman, and
Michael Rubinstein. 2021. Omnimatte: Associating objects and their effects in video.
In CVPR.

Tao Lu, Mulin Yu, Linning Xu, Yuanbo Xiangli, Limin Wang, Dahua Lin, and Bo Dai.
2024. Scaffold-gs: Structured 3d gaussians for view-adaptive rendering. In CVPR.

Saswat Subhajyoti Mallick, Rahul Goel, Bernhard Kerbl, Markus Steinberger, Fran-
cisco Vicente Carrasco, and Fernando De La Torre. 2024. Taming 3DGS: High-Quality
Radiance Fields with Limited Resources. In SIGGRAPH Asia.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ra-
mamoorthi, and Ren Ng. 2021. Nerf: Representing scenes as neural radiance fields
for view synthesis. Commun. ACM (2021).

G.M. Morton. 1966. A Computer Oriented Geodetic Data Base and a New Technique in
File Sequencing. International Business Machines Company. https://books.google.
com/books?id=9FFdHAAACAAJ

KL Navaneet, Kossar Pourahmadi Meibodi, Soroush Abbasi Koohpayegani, and Hamed
Pirsiavash. 2024. CompGS: Smaller and Faster Gaussian Splatting with Vector
Quantization. In ECCV.

Richard A Newcombe, Dieter Fox, and Steven M Seitz. 2015. Dynamicfusion: Recon-
struction and tracking of non-rigid scenes in real-time. In CVPR.

Simon Niedermayr, Josef Stumpfegger, and Rüdiger Westermann. 2024. Compressed
3D Gaussian Splatting for Accelerated Novel View Synthesis. In CVPR.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec,
Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-
Nouby, et al. 2023. Dinov2: Learning robust visual features without supervision.
arXiv:2304.07193 (2023).

Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T. Barron, Sofien Bouaziz,
Dan B Goldman, Ricardo Martin-Brualla, and Steven M. Seitz. 2021. HyperNeRF: a
higher-dimensional representation for topologically varying neural radiance fields.
ACM TOG (2021).

Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. 2020.
D-NeRF: Neural Radiance Fields for Dynamic Scenes. In CVPR.

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu
Ma, Haitham Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, et al. 2024a.
Sam 2: Segment anything in images and videos. arXiv:2408.00714 (2024).

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu
Ma, Haitham Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun,
Junting Pan, Kalyan Vasudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick,
Piotr Dollár, and Christoph Feichtenhofer. 2024b. SAM 2: Segment Anything in
Images and Videos. arXiv:2408.00714 (2024).

Zhile Ren, Orazio Gallo, Deqing Sun, Ming-Hsuan Yang, Erik B Sudderth, and Jan Kautz.
2019. A fusion approach for multi-frame optical flow estimation. In WACV.

Michael Rubinstein, Ce Liu, and William T Freeman. 2012. Towards longer long-range
motion trajectories. In BMVC.

Neus Sabater, Guillaume Boisson, Benoit Vandame, Paul Kerbiriou, Frederic Babon,
Matthieu Hog, Remy Gendrot, Tristan Langlois, Olivier Bureller, Arno Schubert,
and Valerie Allie. 2017. Dataset and Pipeline for Multi-View Light-Field Video. In
CVPR Workshops.

Peter Sand and Seth Teller. 2008. Particle video: Long-range motion estimation using
point trajectories. IJCV (2008).

Hartmut Schirmacher, Li Ming, and Hans-Peter Seidel. 2001. On-the-Fly Processing of
Generalized Lumigraphs. Computer Graphics Forum (2001).

Johannes Lutz Schönberger and Jan-Michael Frahm. 2016. Structure-from-Motion
Revisited. In CVPR.

Liangchen Song, Anpei Chen, Zhong Li, Zhang Chen, Lele Chen, Junsong Yuan, Yi Xu,
and Andreas Geiger. 2023. NeRFPlayer: A Streamable Dynamic Scene Representation
with Decomposed Neural Radiance Fields. IEEE TVCG (2023).

Yunzhou Song, Jiahui Lei, Ziyun Wang, Lingjie Liu, and Kostas Daniilidis. 2024. Track
everything everywhere fast and robustly. In ECCV.

Mohammed Suhail, Erika Lu, Zhengqi Li, Noah Snavely, Leonid Sigal, and Forrester
Cole. 2023. Omnimatte3D: Associating Objects and Their Effects in Unconstrained
Monocular Video. In CVPR.

Gary J. Sullivan, Jens-Rainer Ohm,Woo-Jin Han, and ThomasWiegand. 2012. Overview
of the High Efficiency Video Coding (HEVC) Standard. IEEE TCSVT (2012).

Deqing Sun, Erik Sudderth, and Michael Black. 2010. Layered image motion with
explicit occlusions, temporal consistency, and depth ordering. In NeurIPS.

Jiakai Sun, Han Jiao, Guangyuan Li, Zhanjie Zhang, Lei Zhao, and Wei Xing. 2024.
3DGStream: On-the-Fly Training of 3D Gaussians for Efficient Streaming of Photo-
Realistic Free-Viewpoint Videos. In CVPR.

Vivienne Sze, Madhukar Budagavi, and Gary J. Sullivan. 2014. High Efficiency Video
Coding (HEVC): Algorithms and Architectures. Springer Publishing Company, Incor-
porated.

ACM Trans. Graph., Vol. 44, No. 4, Article 124. Publication date: August 2025.

https://github.com/google/draco
https://github.com/antimatter15/splat
https://github.com/antimatter15/splat
https://books.google.com/books?id=9FFdHAAACAAJ
https://books.google.com/books?id=9FFdHAAACAAJ

124:14 • Pinxuan Dai, Peiquan Zhang, Zheng Dong, Ke Xu, Yifan Peng, Dandan Ding, Yujun Shen, Yin Yang, Xinguo Liu, Rynson W.H. Lau, and Weiwei Xu

Zachary Teed and Jia Deng. 2020. Raft: Recurrent all-pairs field transforms for optical
flow. In ECCV.

Yi Tian and Juan Andrade-Cetto. 2024. SDformerFlow: Spatiotemporal swin spikeformer
for event-based optical flow estimation. arXiv:2409.04082 (2024).

Sundar Vedula, Simon Baker, Steven Seitz, and Takeo Kanade. 2000. Shape and motion
carving in 6D. In CVPR.

Carl Vondrick, Abhinav Shrivastava, Alireza Fathi, Sergio Guadarrama, and Kevin
Murphy. 2018. Tracking emerges by colorizing videos. In ECCV.

Feng Wang, Zilong Chen, Guokang Wang, Yafei Song, and Huaping Liu. 2023b. Masked
space-time hash encoding for efficient dynamic scene reconstruction. Advances in
neural information processing systems 36 (2023), 70497–70510.

Feng Wang, Sinan Tan, Xinghang Li, Zeyue Tian, Yafei Song, and Huaping Liu. 2023d.
Mixed Neural Voxels for Fast Multi-view Video Synthesis. In ICCV.

HenanWang, Hanxin Zhu, Tianyu He, Runsen Feng, Jiajun Deng, Jiang Bian, and Zhibo
Chen. 2024d. End-to-End Rate-Distortion Optimized 3D Gaussian Representation.
In ECCV.

Liao Wang, Kaixin Yao, Chengcheng Guo, Zhirui Zhang, Qiang Hu, Jingyi Yu, Lan Xu,
and Minye Wu. 2024b. VideoRF: Rendering Dynamic Radiance Fields as 2D Feature
Video Streams. In CVPR.

Penghao Wang, Zhirui Zhang, Liao Wang, Kaixin Yao, Siyuan Xie, Jingyi Yu, Minye
Wu, and Lan Xu. 2024c. V3: Viewing Volumetric Videos on Mobiles via Streamable
2D Dynamic Gaussians. ACM TOG (2024).

Qianqian Wang, Yen-Yu Chang, Ruojin Cai, Zhengqi Li, Bharath Hariharan, Aleksander
Holynski, and Noah Snavely. 2023a. Tracking everything everywhere all at once. In
ICCV.

Yiming Wang, Qin Han, Marc Habermann, Kostas Daniilidis, Christian Theobalt, and
Lingjie Liu. 2023c. Neus2: Fast learning of neural implicit surfaces for multi-view
reconstruction. In ICCV.

Yihan Wang, Lahav Lipson, and Jia Deng. 2024a. SEA-RAFT: Simple, Efficient, Accurate
RAFT fornbsp;Optical Flow. In ECCV.

Philippe Weinzaepfel, Jerome Revaud, Zaid Harchaoui, and Cordelia Schmid. 2013.
DeepFlow: Large displacement optical flow with deep matching. In ICCV.

Chung-Yi Weng, Brian Curless, Pratul P Srinivasan, Jonathan T Barron, and Ira
Kemelmacher-Shlizerman. 2022. Humannerf: Free-viewpoint rendering of moving
people from monocular video. In CVPR.

T. Wiegand, G.J. Sullivan, G. Bjontegaard, and A. Luthra. 2003. Overview of the
H.264/AVC video coding standard. IEEE TCSVT (2003).

Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu
Liu, Qi Tian, and Xinggang Wang. 2024a. 4D Gaussian Splatting for Real-Time
Dynamic Scene Rendering. In CVPR.

Tong Wu, Yu-Jie Yuan, Ling-Xiao Zhang, Jie Yang, Yan-Pei Cao, Ling-Qi Yan, and Lin
Gao. 2024b. Recent advances in 3D Gaussian splatting. Comput. Vis. Media 10, 4
(August 2024), 613–642. https://doi.org/10.1007/s41095-024-0436-y

Jiawei Xu, Zexin Fan, Jian Yang, and Jin Xie. 2024a. Grid4D: 4D Decomposed Hash
Encoding for High-fidelity Dynamic Scene Rendering. In NeurIPS.

Zhen Xu, Sida Peng, Haotong Lin, Guangzhao He, Jiaming Sun, Yujun Shen, Hujun Bao,
and Xiaowei Zhou. 2024b. 4K4D: Real-Time 4D View Synthesis at 4K Resolution. In
CVPR.

Zhen Xu, Yinghao Xu, Zhiyuan Yu, Sida Peng, Jiaming Sun, Hujun Bao, and Xiaowei
Zhou. 2024c. Representing Long Volumetric Video with Temporal Gaussian Hierar-
chy. ACM TOG (2024).

Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing Zhang, and Xiaogang Jin.
2024a. Deformable 3D Gaussians for High-Fidelity Monocular Dynamic Scene
Reconstruction. In CVPR.

Zeyu Yang, Hongye Yang, Zijie Pan, and Li Zhang. 2024b. Real-time Photorealistic
Dynamic Scene Representation and Rendering with 4D Gaussian Splatting. In ICLR.

Ye Zhang and Chandra Kambhamettu. 2001. On 3D scene flow and structure estimation.
In CVPR.

Ruijie Zhu, Yanzhe Liang, Hanzhi Chang, Jiacheng Deng, Jiahao Lu, Wenfei Yang,
Tianzhu Zhang, and Yongdong Zhang. 2024. Motiongs: Exploring explicit motion
guidance for deformable 3d gaussian splatting. arXiv:2410.07707 (2024).

C. Lawrence Zitnick, Sing Bing Kang, Matthew Uyttendaele, SimonWinder, and Richard
Szeliski. 2004. High-quality video view interpolation using a layered representation.
ACM TOG (2004).

A HYPERPARAMETERS
We set the number of nearest neighbors cluster to 8, and the local
time window in 𝐿𝑡𝑒𝑚𝑝 to 2 frames. Other hyperparameters settings
are listed in Table 11. All default hyperparameters are used for the
Neu3DV [Li et al. 2022b] dataset. We empirically set CRF265 and
QPDRC to 14 on Technicolor [Sabater et al. 2017] dataset, and use
the group length of 20 on the MeetRoom [Li et al. 2022a] dataset.

Table 11. Default hyperparameter values.

𝜆 𝜆𝑎𝑟𝑎𝑝 𝜆𝑡𝑒𝑚𝑝 𝜆𝑟𝑎𝑓 𝑡 𝜆
𝑑𝑦𝑛
𝑠𝑒𝑔 𝜆𝑛𝑛𝑠𝑒𝑔 𝜆

𝑔𝑟𝑎𝑑

𝑎𝑑𝑝
𝜆𝑛𝑛
𝑎𝑑𝑝

0.2 0.01 0.01 2 0.3 0.5 3𝑒−4 0.6

(Cube+)

21 views
200 seconds
6000 frames

Capturing Setup The DeskGames Dataset

(Dominos+)

(UNO+)

Fig. 13. Our capture setup (left) and image samples (right).

B DATASET DETAILS
We evaluate the novel-view rendering quality of our 4D Gaussian
Video (4DGV) method against existing methods on four datasets,
including three public datasets (i.e., Neu3DV [Li et al. 2022b], Meet-
Room [Li et al. 2022a], and Technicolor [Sabater et al. 2017]), as well
as our DeskGames dataset.
The Neu3DV dataset [Li et al. 2022b] contains six indoor cook-

ing scenes, each captured from 18 to 21 viewpoints in 300 frames,
including challenging effects such as flames, smoke, and fluids. We
use the downsampled images at a resolution of 1, 352×1, 014 with
camera index 1-17 for training, and the image with camera index
0 for testing, following the established convention [Li et al. 2022b;
Yang et al. 2024b].

The MeetRoom dataset [Li et al. 2022a] records four indoor scenes
with human activities, including walking, trimming, wearing VR
devices, and discussion. This dataset consists of 300 frames of 13-
viewpoints, at a resolution of 1, 280×720, where the images with
camera index 0 are reserved for testing [Li et al. 2022a; Sun et al.
2024].

The Technicolor dataset [Sabater et al. 2017] features scenes with
more complex backgrounds and motions. Following prior works [At-
tal et al. 2023; Lee et al. 2024c; Li et al. 2024], we conduct evaluation
on the five scenes (i.e., Birthday, Fabien, Painter, Theater, and Train)
at the full resolution of 2, 048×1, 088, using the images with camera
index 10 for testing. Unlike previous works that only selected 50
frames for evaluation in each scene, we utilize all available frames
of these scenes, ranging from 200 to 391 frames.

The dynamic dataset we have collected, dubbedDeskGames, poses
a more challenging benchmark for evaluation. We have built a multi-
view acquisition system utilizing 21 synchronized forward-facing
cellphones to capture dynamic scenes at 30 FPS, with a resolution
of 2, 560×1, 440. Our synchronized capture system and the recorded
three scenes are shown in Fig. 13. Following image acquistion, we
employ COLMAP [Schönberger and Frahm 2016] to calculate the

ACM Trans. Graph., Vol. 44, No. 4, Article 124. Publication date: August 2025.

https://doi.org/10.1007/s41095-024-0436-y

4D Gaussian Videos with Motion Layering • 124:15

intrinsic and extrinsic parameters of the cameras. Our dataset com-
prises three long video sequences, each spanning 6,000 frames and
featuring fast motions and frequent human-object interactions.

C REAL-TIME STREAMING
We have developed a local player for real-time playback of recon-
structed 4D Gaussian videos (Fig. 14 top). Users could navigate to
see the volumetric videos from any feasible viewpoint and pause
the video at any time. In addition to a locally running player, we
have also implemented an online web streaming player that runs in
browsers by extending [Kwok 2023], enabling access to volumetric
videos on almost any internet-connected device (Fig. 14 bottom).
The web player supports volumetric video playback at around 60
fps, and allows users to pause videos or switch viewpoints at any
time. We have successfully tested it on personal laptops (e.g., with
NVIDIA GeForce RTX 3050 Laptop GPU), iPad Air, and iPhone15.
Our web player sequentially downloads data with web workers

working in background threads, while the main thread handles fo-
cuses on control and rendering tasks. Upon receiving point cloud
data, Gaussians are transformed into a high-resolution texture and
processed in shaders. Then Gaussians are then sorted by depth on
CPU to determine the rendering order. We perform Gaussian splat-
ting using WebGL, enabling fast and smooth rendering. While fully
replicating GPU-based Gaussian splatting on traditional graphics
pipeline is challenging, primarily due to the absence of parallel
prefix sum and per-tile depth sorting in CUDA-based 3D Gaussian
splatting [Kerbl et al. 2023], the results achieved in browsers may ex-
hibit slightly discrepancies compared to those from a CUDA-based
pipeline. Nonetheless, this web player showcases the capability of
our 4DGV to facilitate real-time interactive viewing of volumetric
videos directly within a web browser.

D MORE EXPERIMENTAL RESULTS
Reconstruction and Compression Time Statistics. Overall, Fig. 15

shows the performance of our method on both rendering quality
and storage efficiency. In Table 12, we report the average recon-
struction and compression times on the Neu3DV [Li et al. 2022b]
dataset, measured using a single NVIDIA RTX4090 GPU card. The
H.265 [Sullivan et al. 2012; Sze et al. 2014] decoding time is evaluated
in browsers. These results demonstrate the efficiency of our 4DGV
in reconstructing dynamic scenes and the accessibility on the Web.

Per-scene metrics. Table 13 reports the per-scene results of our
ablation studies on the Group of Gaussians (GOG) reconstruction
(main paper Table 6), group length (main paper Table 7), and de-
formation encoding (main paper Table 10) on the Neu3DV [Li et al.
2022b] dataset. We also report the per-scene quantitative com-
parison results on the Neu3DV [Li et al. 2022b], MeetRoom [Li
et al. 2022a], Technicolor [Sabater et al. 2017], and our DeskGames
datasets, in Table 14, Table 15, Table 16, and Table 17, respectively.
We compare our 4DGV method with six state-of-the-art dynamic
reconstruction approaches with public available codes, including
Grid4D [Xu et al. 2024a], STG [Li et al. 2024], 3DGStream [Sun et al.
2024], Ex4DGS [Lee et al. 2024c], 4DGS [Yang et al. 2024b] and V3

[Wang et al. 2024c]. For a fair comparison with V3 [Wang et al.
2024c], we replace the results of NeuS2 [Wang et al. 2023c] with

O
ff

lin
e

Pl
ay

er
W

eb
 S

tr
ea

m
in

g
Pl

ay
er

iPhone 15 (A16 chip)
~57FPS on Neu3DV

iPad Air (M1 chip)
>60 FPS on MeetRoom

Fig. 14. Local (top) and web streaming (bottom) players for 4DGV.

30

31

32

33

10 100 1,000 10,000

PS
N

R
 (d

B
)

Model Size (MB)

NeRFPlayer

HyperReel

K-Planes

4DGaussians

STG

Ex4DGS

4DGS

3DGStream

Ours

Fig. 15. Our method demonstrates state-of-the-art rendering quality and
storage efficiency compared to established baselines on the Neu3DV dataset.

Table 12. Reconstruction and compression time statistics on the
Neu3DV dataset. The initialization of the first group requires 20k iter-
ations, while subsequent groups undergo 5k iterations for fast refinement.

Procedures Time/scene Time/frame Iterations

Gaussian Point Init. 12.9 min 2.6 sec 20k(5k)/group
Motion Layering Init. 1.5 min 0.3 sec 400/group
GOG Reconstruction 47.9 min 9.6 sec 400/frame

Data I/O 10.2 min 2.0 sec -

H.265 Encoding 0.92 min 0.18 sec -
H.265 Decoding 117 ms 3.9 ms -

the scene point cloud optimized by 3DGS [Kerbl et al. 2023] for key
frame point initialization, to enable V3 [Wang et al. 2024c] to handle
scene-level reconstruction.

ACM Trans. Graph., Vol. 44, No. 4, Article 124. Publication date: August 2025.

124:16 • Pinxuan Dai, Peiquan Zhang, Zheng Dong, Ke Xu, Yifan Peng, Dandan Ding, Yujun Shen, Yin Yang, Xinguo Liu, Rynson W.H. Lau, and Weiwei Xu

Table 13. Per-scene ablation metrics. We report the PSNR and model size (in MB) on the Neu3DV dataset.

Scene Metrics Default GOG Reconstruction: w/o Group Length Deformation Encoding: Config.
Reg. Prog. Adp. Ref. 10 20 40 50 #1 #2 #4 #5 #6 #7

Coffee PSNR ↑ 28.81 28.69 28.62 28.73 28.09 28.71 28.70 28.66 28.61 28.82 28.81 28.70 28.68 28.57 28.56
Martini Size ↓ 19.05 19.44 21.84 17.58 18.67 32.96 24.01 16.97 13.26 237.6 20.98 18.18 15.68 16.18 19.88

Cook PSNR ↑ 34.01 34.08 33.95 33.90 32.14 34.16 33.99 33.79 33.83 34.01 34.01 33.95 33.92 33.85 33.51
Spinach Size ↓ 24.87 27.53 25.29 20.51 24.14 40.80 28.97 21.28 17.07 292.8 27.13 23.73 19.03 20.33 27.13

Cut PSNR ↑ 33.95 34.02 33.94 33.72 32.11 34.04 34.08 33.47 33.48 33.96 33.95 33.87 33.75 33.70 33.04
Beef Size ↓ 24.46 26.23 23.80 20.89 24.67 44.21 31.66 24.11 20.89 333.9 26.90 23.10 18.60 20.80 29.50

Flame PSNR ↑ 29.49 29.49 29.38 29.39 28.40 29.38 29.53 28.79 28.82 29.50 29.49 29.38 29.33 29.18 29.10
Salmon Size ↓ 17.26 21.78 19.82 18.85 19.70 35.29 24.04 17.07 14.70 209.0 18.85 16.55 14.55 15.05 20.25

Flame PSNR ↑ 34.33 34.18 34.23 34.07 32.42 34.48 34.41 34.10 34.00 34.34 34.33 34.29 34.28 34.17 34.02
Steak Size ↓ 23.94 22.74 17.35 21.89 20.04 39.72 27.76 22.72 18.55 261.6 25.88 22.88 17.98 18.08 24.48

Sear PSNR ↑ 34.73 34.75 34.56 34.67 34.07 34.73 34.74 34.37 34.50 34.73 34.73 34.69 34.68 34.62 34.45
Steak Size ↓ 17.69 17.04 14.11 17.01 16.51 27.46 21.98 13.18 14.17 194.3 19.06 16.96 14.06 13.86 19.06

Average
PSNR ↑ 32.55 32.54 32.45 32.41 31.21 32.58 32.57 32.18 32.21 32.56 32.55 32.48 32.44 32.35 32.11
Size ↓ 21.21 22.46 20.37 19.58 20.62 36.74 26.24 19.22 16.44 254.9 23.13 20.23 16.65 17.38 23.38

C
of

fe
e

M
ar

ti
ni

fr
am

e#
1

Fl
am

e
Sa

lm
on

fr
am

e#
24
6

Pa
in

te
r

fr
am

e#
31
0

St
ep

In
fr
am

e#
96

Ours 4DGS 3DGStream Grid4D Ex4DGS STG V3 GT

V
R

H
ea

ds
et

fr
am

e#
17
2

V
R

H
ea

ds
et

fr
am

e#
17
2

Fig. 16. More qualitative comparisons.

ACM Trans. Graph., Vol. 44, No. 4, Article 124. Publication date: August 2025.

4D Gaussian Videos with Motion Layering • 124:17

Table 14. Quantitative comparisons on Neu3DV [Li et al. 2022b]
dataset. We report the PSNR, SSIM, LPIPS and model size (in MB). *:
without compression.

N3DV PSNR ↑ SSIM ↑ LPIPS ↓ Size ↓

C
off

ee
M
ar
tin

i

Ours* 28.818 0.9197 0.1446 237.6
Ours 28.814 0.9195 0.1447 19.05
4DGS 27.974 0.9113 0.1544 2292
Ex4DGS 28.051 0.9199 0.1464 133.4
3DGStream 27.504 0.9029 0.1609 2325
STG 28.142 0.9086 0.1712 202.0
Grid4D 29.571 0.9146 0.1532 167.6
V3 23.469 0.8120 0.2854 104.2

C
oo
k
Sp
in
ac
h

Ours* 34.013 0.9583 0.1250 292.8
Ours 34.008 0.9582 0.1250 24.87
4DGS 33.230 0.9562 0.1339 2061
Ex4DGS 32.954 0.9555 0.1301 131.8
3DGStream 33.683 0.9553 0.1316 2304
STG 32.824 0.9524 0.1435 222.9
Grid4D 33.000 0.9526 0.1284 322.0
V3 27.179 0.8803 0.2294 123.0

C
ut

Be
ef

Ours* 33.964 0.9580 0.1305 333.9
Ours 33.948 0.9578 0.1306 24.46
4DGS 32.244 0.9486 0.1508 1825
Ex4DGS 32.519 0.9588 0.1261 119.5
3DGStream 33.779 0.9548 0.1373 2306
STG 32.824 0.9540 0.1432 168.7
Grid4D 32.249 0.9527 0.1263 321.4
V3 27.179 0.8734 0.2430 110.1

Fl
am

e
Sa
lm

on

Ours* 29.500 0.9260 0.1397 209.0
Ours 29.491 0.9255 0.1399 17.26
4DGS 28.330 0.9141 0.1508 2765
Ex4DGS 29.038 0.9251 0.1368 131.7
3DGStream 28.554 0.9183 0.1444 2325
STG 29.677 0.9258 0.1444 263.1
Grid4D 29.949 0.9192 0.1463 168.5
V3 23.688 0.8115 0.2830 109.8

Fl
am

e
St
ea
k

Ours* 34.337 0.9648 0.1148 261.6
Ours 34.332 0.9648 0.1148 23.94
4DGS 33.164 0.9570 0.1362 1670
Ex4DGS 33.367 0.9635 0.1135 111.1
3DGStream 34.043 0.9643 0.1168 2301
STG 33.572 0.9620 0.1288 233.4
Grid4D 33.778 0.9597 0.1197 315.9
V3 25.831 0.8986 0.2105 116.2

Se
ar

St
ea
k

Ours* 34.734 0.9668 0.1143 194.3
Ours 34.730 0.9668 0.1143 17.69
4DGS 33.742 0.9627 0.1280 1531
Ex4DGS 33.376 0.9624 0.1146 101.0
3DGStream 34.458 0.9642 0.1188 2299
STG 33.767 0.9609 0.1332 194.0
Grid4D 34.306 0.9608 0.1191 317.9
V3 25.413 0.9008 0.2082 117.3

Table 15. Quantitative comparisons on MeetRoom [Li et al. 2022a]
dataset.We report the PSNR, SSIM, LPIPS andmodel size (inMB). *: without
compression.

MeetRoom PSNR ↑ SSIM ↑ LPIPS ↓ Size ↓

D
is
cu
ss
io
n

Ours* 32.648 0.9632 0.1593 310.3
Ours 32.649 0.9631 0.1595 31.35
4DGS 31.971 0.9569 0.1656 2486
Ex4DGS 31.154 0.9510 0.1754 87.69
3DGStream 30.948 0.9525 0.1695 2299
STG 30.557 0.9432 0.1890 92.64
Grid4D 31.091 0.9526 0.1555 301.2
V3 25.588 0.8611 0.3187 91.64

St
ep

In

Ours* 30.945 0.9497 0.1815 96.88
Ours 30.944 0.9497 0.1816 13.24
4DGS 30.940 0.9467 0.1836 2680
Ex4DGS 30.376 0.9379 0.1945 87.17
3DGStream 29.275 0.9295 0.2082 2289
STG 27.771 0.9175 0.2223 56.86
Grid4D 28.874 0.9376 0.1763 295.8
V3 25.974 0.8614 0.3196 80.39

Tr
im

m
in
g

Ours* 33.545 0.9596 0.1698 123.6
Ours 33.545 0.9596 0.1698 16.64
4DGS 32.747 0.9564 0.1689 1589
Ex4DGS 32.528 0.9504 0.1779 67.45
3DGStream 32.419 0.9537 0.1764 2289
STG 29.697 0.9301 0.2129 62.50
Grid4D 31.985 0.9541 0.1532 294.7
V3 26.776 0.8701 0.3028 74.87

VR
H
ea
ds
et

Ours* 32.104 0.9551 0.1806 114.4
Ours 32.106 0.9551 0.1806 15.61
4DGS 32.091 0.9531 0.1877 2028
Ex4DGS 30.048 0.9433 0.1943 57.52
3DGStream 31.637 0.9490 0.1916 2290
STG 30.034 0.9365 0.2134 73.15
Grid4D 30.646 0.9480 0.1678 294.8
V3 26.135 0.8637 0.3276 80.47

ACM Trans. Graph., Vol. 44, No. 4, Article 124. Publication date: August 2025.

124:18 • Pinxuan Dai, Peiquan Zhang, Zheng Dong, Ke Xu, Yifan Peng, Dandan Ding, Yujun Shen, Yin Yang, Xinguo Liu, Rynson W.H. Lau, and Weiwei Xu

Table 16. Quantitative comparisons on Technicolor [Sabater et al.
2017] dataset. We report the PSNR, SSIM, LPIPS and model size (in MB). *:
without compression.

Technicolor PSNR ↑ SSIM ↑ LPIPS ↓ Size ↓

Bi
rt
hd

ay

Ours* 29.417 0.9146 0.1257 1199
Ours 29.198 0.9095 0.0589 87.92
4DGS 26.580 0.8291 0.2719 3306
Ex4DGS 28.837 0.9069 0.1512 607.6
3DGStream 22.388 0.7174 0.3981 2589
STG 29.114 0.9170 0.1286 386.0
Grid4D 28.890 0.9113 0.1318 440.2
V3 24.164 0.7637 0.2532 244.8

Fa
bi
en

Ours* 33.773 0.8656 0.3124 356.0
Ours 32.984 0.8523 0.3262 17.68
4DGS 32.706 0.8476 0.3695 3076
Ex4DGS 34.318 0.8634 0.3321 112.5
3DGStream 29.650 0.8085 0.4205 1583
STG 34.493 0.8782 0.2795 198.1
Grid4D 32.493 0.8487 0.3360 310.6
V3 28.095 0.7836 0.3789 70.65

Pa
in
te
r

Ours* 35.059 0.9199 0.2059 414.6
Ours 35.004 0.9183 0.2072 34.30
4DGS 33.030 0.8799 0.2807 2938
Ex4DGS 33.705 0.8998 0.2469 293.6
3DGStream 29.466 0.8270 0.3620 2956
STG 35.795 0.9250 0.1849 678.9
Grid4D 33.601 0.9138 0.1986 341.4
V3 23.260 0.6972 0.4052 180.2

Th
ea
te
r

Ours* 31.682 0.8701 0.2656 505.8
Ours 31.532 0.8673 0.2686 41.13
4DGS 28.552 0.7873 0.4058 2809
Ex4DGS 29.742 0.8514 0.2879 283.9
3DGStream 25.665 0.7152 0.4858 3148
STG 30.454 0.8638 0.2513 451.6
Grid4D 28.963 0.8569 0.2683 357.8
V3 25.966 0.7414 0.3806 267.9

Tr
ai
n

Ours* 30.119 0.9195 0.1239 125.9
Ours 30.108 0.9193 0.1241 20.15
4DGS 23.744 0.6455 0.4083 3220
Ex4DGS 30.062 0.9187 0.1286 529.6
3DGStream 20.207 0.4737 0.5643 2802
STG 31.890 0.9385 0.0879 464.9
Grid4D 27.878 0.9092 0.1132 440.6
V3 23.931 0.7418 0.2821 230.7

Table 17. Quantitative comparisons on DeskGames dataset. We report
the PSNR, SSIM, LPIPS and model size (in MB). *: without compression.

DeskGames PSNR ↑ SSIM ↑ LPIPS ↓ Size ↓

C
ub

e

Ours* 30.099 0.9089 0.1828 179.6
Ours 30.099 0.9089 0.1828 25.43
4DGS 29.843 0.9028 0.1999 2861
Ex4DGS 28.537 0.8926 0.1928 448.5
3DGStream 29.971 0.9088 0.1826 2355
STG 28.038 0.8904 0.2073 377.4
Grid4D 22.857 0.8061 0.2965 298.7
V3 25.357 0.8131 0.2933 199.7

D
om

in
o

Ours* 31.463 0.9234 0.1662 408.5
Ours 31.456 0.9233 0.1663 35.53
4DGS 30.677 0.9134 0.1877 2805
Ex4DGS 29.968 0.9125 0.1730 427.4
3DGStream 30.868 0.9198 0.1754 2336
STG 29.421 0.9171 0.1726 384.6
Grid4D 29.427 0.9004 0.1922 346.1
V3 26.318 0.8350 0.2648 225.6

Re
ad
in
g

Ours* 31.662 0.9258 0.1672 300.0
Ours 31.659 0.9258 0.1673 29.16
4DGS 30.300 0.9407 0.2074 1999
Ex4DGS 29.894 0.9098 0.1767 381.3
3DGStream 31.448 0.9224 0.1684 2332
STG 30.043 0.9182 0.1757 438.5
Grid4D 23.340 0.8409 0.2450 336.4
V3 26.319 0.8424 0.2565 221.0

U
N
O

Ours* 30.373 0.9234 0.1547 591.6
Ours 30.357 0.9232 0.1550 47.78
4DGS 29.615 0.9020 0.2022 2798
Ex4DGS 29.527 0.9085 0.1760 286.7
3DGStream 29.740 0.9178 0.1635 2349
STG 25.887 0.8813 0.2042 385.0
Grid4D 29.547 0.9047 0.1768 354.9
V3 26.217 0.8281 0.2538 255.0

ACM Trans. Graph., Vol. 44, No. 4, Article 124. Publication date: August 2025.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Volumetric Video
	2.2 Motion Layering Methods
	2.3 Point Cloud Compression

	3 Preliminary
	4 4D Gaussian Video
	4.1 Adaptive Motion Layering
	4.2 The GOG Reconstruction
	4.3 The GOG Compression
	4.4 Real-Time Rendering

	5 Experiments
	5.1 Implementation Details
	5.2 Evaluation Settings
	5.3 Main Results
	5.4 Ablations

	6 Conclusion
	Acknowledgments
	References
	A Hyperparameters
	B Dataset Details
	C Real-Time Streaming
	D More Experimental Results

